CHEMTRONICS® Technical Data Sheet

TDS # SWNoClean

Soder-Wick® No Clean Desoldering Braid

PRODUCT DESCRIPTION

Soder-Wick[®] No Clean is designed to provide fast and safe desoldering without leaving behind harmful flux residues. Soder-Wick[®] No Clean uses pure, oxygen free copper braid and a patented flux technology to make an efficient and effective desoldering braid. Soder-Wick[®] No Clean SD is available on ESD safe bobbins for protection against damage due to static electricity.

- Requires little or no post solder cleaning
- No corrosive residues
- Halide free
- ESD Safe bobbins meet specs: MIL-STD-1686C MIL-HDBK-263B Static decay provision of MIL-B-81705C
- Minimal risk of heat and static component damage

TYPICAL APPLICATIONS

Soder-Wick[®] No Clean safely removes solder from:

- Lugs and Posts
- Micro Circuits
- Surface Mount Device Pads
- Ball Grid Array Pads

TYPICAL PRODUCT DATA AND PHYSICAL PROPERTIES

Surface Insulation Resistance				
Bellcore TR-NWT-000078 : PASS After 96 Hours (megohms) 2 x 10 ⁴ Limit				
Group A 4.8 x 10 ⁶	$\frac{\text{Group B}}{3.8 \times 10^6}$	Group C 4.1 x 10 ⁶		
ANSI/IPC J	SF-818	: PASS		
After 168	Hours (ohms) 1.8 x	x 10 ⁸ Limit		
<u>1-2</u>	<u>2-3</u> <u>3-4</u>			
2.3 x 10 ¹⁰	2.6×10^{10} 2.8×10^{10}	$10^{10} \qquad 2.8 \times 10^{10}$		
Electromign	ation	: PASS		
Average I	nsulation Resistanc	ee		
(megohms)-One Decade Limit				
	<u>Initial</u>	<u>Final</u>		
Group E	3.93×10^3			
_	3.87×10^3			
At 10x magnification no evidence of				
electromigra	tion or heavy corro	osion.		
Silver Chro	mate Test Paper	PASS		
Copper Mir	ror Test	PASS		
Shelflife		2 years		
RoHS/WE	EE	ROHS WEEE		
Status		Compliant		

SODER-WICK® NO CLEAN MEETS OR EXCEEDS:

MIL-F-14256F, Type R DOD-STD-883E, Method 2022 Bellcore TR-NWT-000078 ANSI/IPC J SF-818

Part #	Size Inches	Color	Size Metric
1	.030"	White	.76mm
2	.060"	Yellow	1.52mm
3	.080"	Green	2.03mm
4	.110"	Blue	2.79mm
5	.145"	Brown	3.68mm
6	.210"	Red	5.33mm
BGA	-	Purple	-

USAGE INSTRUCTIONS

For industrial use only.

Read MSDS carefully prior to use.

- 1) Choose a Soder-Wick® No Clean width equal to or slightly larger than the pad or connection.
- 2) Choose a solder iron tip equal to or slightly larger than the pad or connection.
- 3) Set temperature of iron between 600-750°F.
- 4) Place wick on solder joint and place tip of hot iron on top of wick.
- 5) As solder becomes molten, the color of the wick will change from copper to silver.
- 6) Remove wick and iron from joint simultaneously once color change has stopped.
- 7) The component lead / pad is now clean and free from solder.
- 8) Clip and discard used portion of the wick.

TECHNICAL & APPLICATION ASSISTANCE

Chemtronics® provides a technical hotline to answer your technical and application related questions. The toll free number is: **1-800-TECH-401.**

Chemtronics®, Soder-Wick® and CircuitWorks® are registered trademarks of ITW Chemtronics. All rights reserved. VacuPak TM is a trademark of ITW Chemtronics. All rights reserved.

AVAILABILITY

Part #	Size	Length	Part #	Size	Length
60-1-5	1	5	60-1-10	1	10
60-2-5	2	5	60-2-10	2	10
60-3-5	3	5	60-3-10	3	10
60-4-5	4	5	60-4-10	4	10
60-5-5	5	5	60-5-10	5	10
60-6-5	6	5			

VacuPak [™] Packaging	Part #	Size
The VacuPak Can contains ten five-foot bobbins in a vacuum sealed can. This package provides the highest level of cleanliness and	SW16015 SW16025 SW16035 SW16045	1 2 3 4
freshness. Great for tool kit storage.	SW16055 SW160BGA	5 BGA

NOTE:

This information is believed to be accurate. It is intended for professional end users having the skills to evaluate and use the data properly. ITW Chemtronics® does not guarantee the accuracy of the data and assumes no liability in connection with damages incurred while using it.

MANUFACTURED BY:

ITW CHEMTRONICS®
8125 COBB CENTER DRIVE
KENNESAW, GA 30152

1-770-424-4888 REV. F (06/06)

DISTRIBUTED BY:		
1		