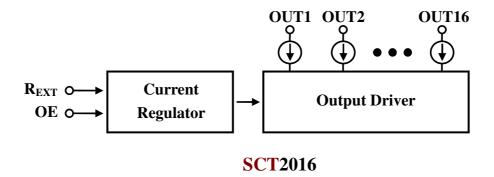


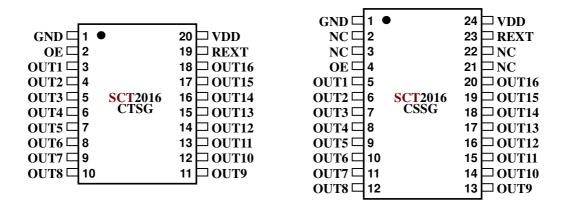
16-Channel Constant Current Driver

Product Description

The SCT2016 is a sixteen channels constant current driver best for the LED lighting. It provides the finest PWM control effect by sinking constant current from LED clusters with minimum pulse width 80nS. The PWM control is performed by connecting the PWM signal from system control unit to OE pin of SCT2016. The full scale current value of each output is set by an external resistor connected to REXT pin.


The SCT2016 guarantees to endure maximum DC 24V at each output port. Each output of SCT2016 can sink a constant current up to 80mA. Users can simply shunt the outputs to get higher current driver-ability, especially in the case of high power LED lighting.

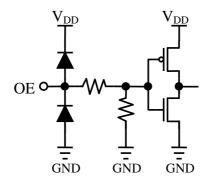
The excellent current regulation capability allows SCT2016 easily drive each output current to a constant stable status nearly without affecting by power supply of LED, loading due to variant V_F of LEDs and operating temperature. The SCT2016 is equipped with over temperature protection. The sixteen channels IC stops driving the output while sense its junction temperature exceeds the 160 $^{\circ}$ C high limit and the output will be reactivated while the junction temperature is below the 130 $^{\circ}$ C low limit. In conclusion, the driver system is protected from damage of overheat.


Features

- Sixteen constant-current outputs rate at 24V
- Current regulated output channels, constant current range: 5 80mA
- Constant current source invariant to load voltage change
- ◆ Fast output current control, the minimum output enable pulse width = 80ns
- ±2%(typ) current matching between outputs
- ±4%(typ) current matching between ICs
- Low dropout output 0.4V@20mA
- All output current are adjusted through one external resistor
- Dimming control available
- Built-in power on reset and thermal protection function
- Supply voltage range: 5V
- Package: TSSOP20 and SSOP24
- Application: LED lighting, LED backlight, LED lamp

Block Diagram

Pin Configuration


Terminal Description

For TSSOP20/SSOP24

Pin	Pin No. Pin Name		Function
1	1	GND	Ground terminal
2	4	OE	Input terminal of output enable signal. Output is enabled when OE is high.
3~18	5~20	OUT1~16	Output terminals with constant current
19	23	REXT	Input terminal connected to an external resistor for setting up all output current
20	24	VDD	Supply voltage terminal

NC: No Connection

Equivalent Circuits of Inputs

Ordering information

Part	Marking	Package	Unit per reel(pcs)
SCT2016CTSG	SCT2016CTSG	Green TSSOP20 with thermal pad	2500
SCT2016CSSG	SCT2016CSSG	Green SSOP24	2500

StarChips Technology, Inc.

4F, No.5, Technology Rd., Science-Based Industrial Park, Hsin-Chu, Taiwan, R.O.C.

Tel: +886-3-577-5767 Ext.555

Fax: +886-3-577-6575

E-mail: service@starchips.com.tw

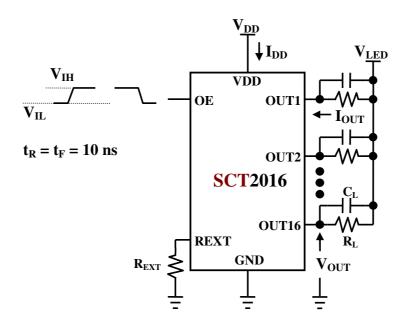
Maximum Ratings (T_A = 25 ℃)

Characteris	stic	Symbol	Rating	Unit
Supply voltage		V_{DD}	7	V
Input voltage		V _{IN}	-0.2 ~ V _{DD} +0.2	V
Output current		I _{OUT}	90	mA/Channel
Output voltage		V _{OUT}	24	V
Total GND terminals cu	urrent	I _{GND}	1200	mA
Power dissipation	TSSOP20	P _D	1.39	W
(Free Air)	SSOP24	Гр	1.39	W
Thermal resistance	TSSOP20	D	90	.c ∖M
(Free Air) SSOP24		$R_{TH(j-a)}$	90	.c ∖M
Operating temperature		T _{OPR}	-40~+85	∞
Storage temperature		T _{STG}	-55~+150	∞

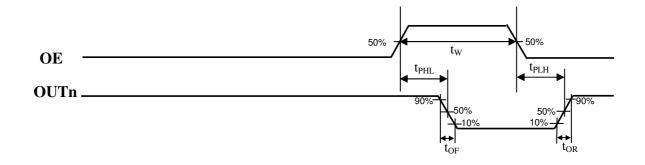
Recommended Operating Conditions (T_A =-40 to 85 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage	V_{DD}	-	4.5	-	5.5	V
Output voltage	V	Output OFF	-	-	24	V
Output voltage	V _{OUT}	Output ON	-	1	4	V
Output current	l _{out}	DC test circuit	5	-	80	mA
Input voltage	V _{IH}	-	2	-	V_{DD}	V
Input voltage	V _{IL}	-	0	-	0.4	V
OE pulse width	t _w	V _{DD} =4.5~5.5V	80	-	-	ns

Electrical Characteristics (V_{DD}=5V, T_A=25 ℃ unless otherwise noted)

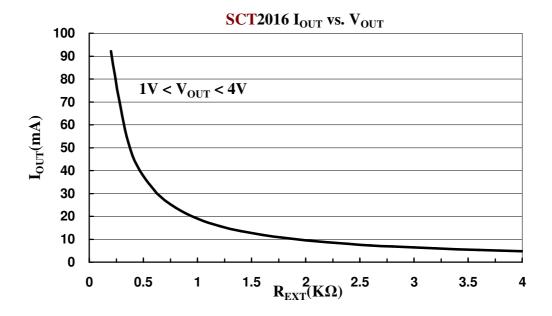

Charact	Characteristic		Cor	nditions	Min.	Тур.	Max.	Unit
land to alterna		V _{IH}	-		2	-	V_{DD}	V
Input volta	ıge	V _{IL}		-	0	-	0.4	V
Output lea	ıkage	I _{OL}	Vol	_{JT} = 24V	-	-	0.5	uA
Output cu	rrent	I _{OUT}	V _{OUT} =1V	$R_{EXT}=900\Omega$	-	21	-	mA
Current channel skew*		dl _{OUT1}	V _{OUT} =1V	R _{EXT} =900Ω	-	±2	±3	%
Current chip skew		dl _{OUT2}	V _{OUT} =1V	$R_{EXT}=900\Omega$	-	±4	±6	%
Line regulation I _{OUT} vs. V _{DD}		%/dV _{DD}	$4.5V < V_{DD} < 5.5V$ $V_{OUT} > 1V$		-	ı	±1	%/V
Load regulation I _{OUT} vs. V _{OUT}		%/dV _{OUT}	$1V < V_{OUT} < 4V$ $R_{EXT} = 900\Omega, V_{DD} = 5V$		-	-	±1	%/V
Pull-down	resistor	R_{DOWN}	OE		-	500	-	ΚΩ
Thormal	hutdown	T _H	lunation Tananauatura		-	160	-	$^{\circ}$
Thermal shutdown		T _L	Junction Temperature		-	130	-	$_{\mathbb{C}}$
Supply current	OFF	I _{DD(OFF)1}		oen, V _{DD} = 5V OUT ₁₆ =OFF	-	6	15	
	OFF	I _{DD(OFF)2}		00Ω , $V_{DD} = 5V$ OUT ₁₆ =ON	_	9	15	mA
	ON	I _{DD(ON)}		00Ω , $V_{DD} = 5V$ OUT ₁₆ =ON	-	10	15	

^{*} Skew= $(I_{OUT}-I_{AVG})/I_{AVG}$, where $I_{AVG}=(I_{max}+I_{min})/2$


Switching Characteristics (V_{DD} =5V, T_A =25 $^{\circ}$ C unless otherwise noted)

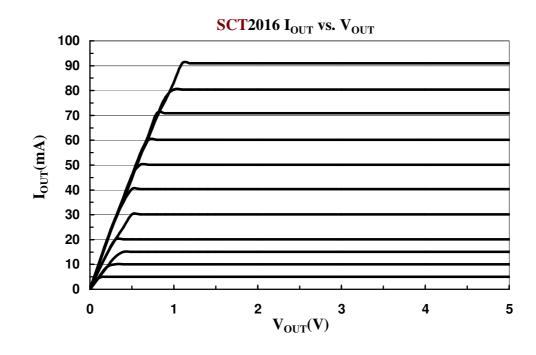
Characte	eristic	Symbol	Conditions	Min.	Тур.	Max.	Unit
Propagation delay time ("L" to "H")	OE - OUTn	t _{PLH}	$V_{DD} = 5 \text{ V}$	-	50	100	ns
Propagation delay time ("H" to "L")	OE - OUTn	t _{PHL}	$V_{LED} = 5V$ $V_{IH} = V_{DD}$ $V_{IL} = GND$	-	30	60	ns
Pulse width	OE	t _w	$R_{EXT} = 900\Omega$ $R_{L} = 180\Omega$	80	-	ı	ns
Output rise time of I _{OUT}		t _{OR}	$C_L = 10pF$	-	10	25	ns
Output fall time of I _{OUT}		t _{OF}		-	10	25	ns

Test Circuit for Switching Characteristics

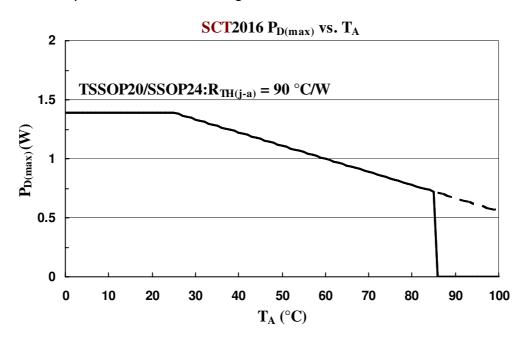


Timing Waveform

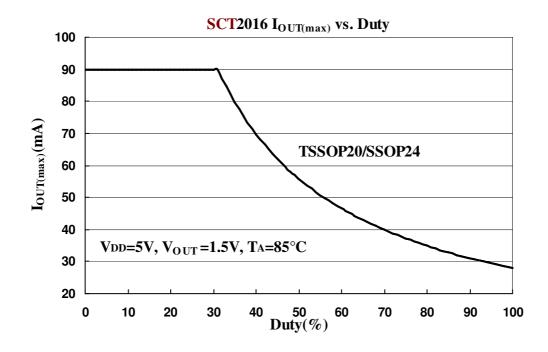
Adjusting Output Current


All SCT2016's output current (I_{OUT}) are set by one external resistor at pin REXT. The output current I_{OUT} versus resistance of R_{EXT} is shown as the following figure.

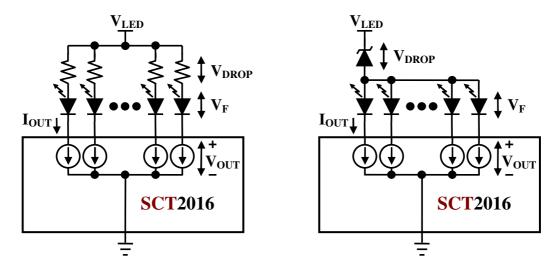
Furthermore, when SCT2016's output voltage is set between 1 Volt and 4 Volt, the output current can be estimated approximately by: $I_{OUT} = 30(630 \ / \ R_{EXT})$ (mA) (chip skew < ±6%). Thus the output current are to be set about 21mA at $R_{EXT} = 900\Omega$.


Output Characteristics

The current characteristic of output stage is flat. The output current remains constant regardless of the variations of LED forward voltage when $V_{OUT} > 1V$. The relationship between I_{OUT} and V_{OUT} is shown below:


Power Dissipation

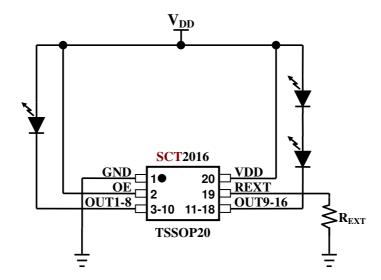
The power dissipation (P_D) of a semiconductor chip is limited by its package and ambient temperature. The maximum allowable power dissipation ($P_{D(max)}$) is determined as $P_{D(max)}=(T_{J(max)}-T_A)/R_{TH(j-a)}$ where $T_{J(max)}$: maximum chip junction temperature, usually considered as 150 °C, T_A : ambient temperature, $R_{TH(j-a)}$: thermal resistance. Since P=IV, for sink larger I_{OUT} , users had better to add proper voltage reducers on output to reduce the heat generated from the SCT2016.


Limitation on Maximum Output Current

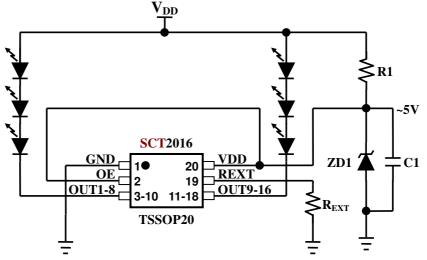
The maximum output current vs. duty cycle is estimated by: $I_{OUT(max)} = (((T_{J(max)} - T_A)/R_{TH(j-a)}) - (V_{DD}*I_{DD}))/V_{OUT}/Duty/N, \text{ where } T_{J(max)} = 150 \, ^{\circ}\text{C}, \text{ N} = 16 \text{(all ON)}$

Load Supply Voltage (Viso)

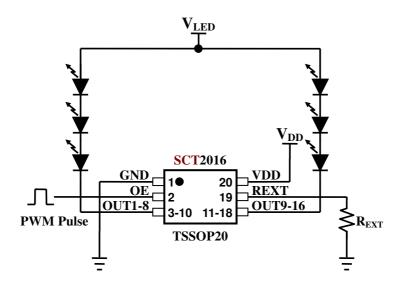
The SCT2016 can be operated very well when V_{OUT} ranging from 1V to 4V. It is recommended to use the lowest possible supply voltage or set a voltage reducer to reduce the V_{OUT} voltage, at the same time reduce the power dissipation of the SCT2016. Follow the diagram instructions shown below to lower down the output voltage. This can be done by adding additional resistor or zener diode, thus $V_{OUT} = V_{LED} - V_{DROP} - V_{F}$.



Over Temperature Shutdown

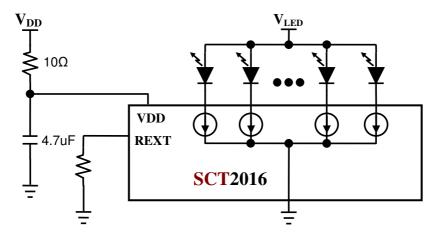

The SCT2016 contains thermal shutdown scheme to prevent damage from over heated. The internal thermal sensor turns off all outputs when the die temperature exceeds $\sim +160\,^{\circ}\text{C}$. The outputs are enabled again when the die temperature drops below $\sim +130\,^{\circ}\text{C}$.

Typical Application Circuits


(1) Lighting with recommended $V_{DD}=5V$

(2) Lighting with $V_{DD} > 5V$, e.g. $V_{DD}=12V/24V$

(3) Lighting with dimming control



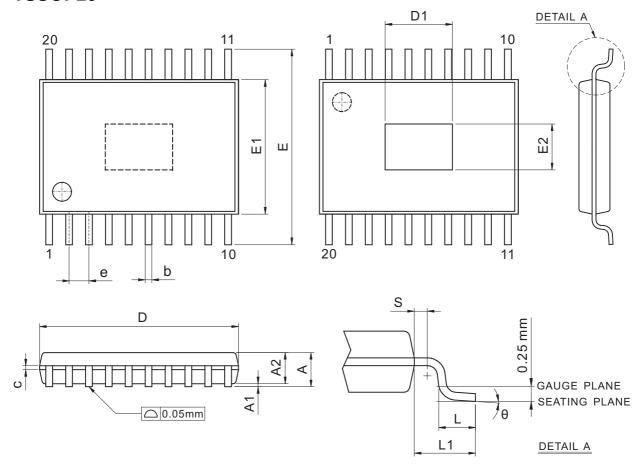
PCB Design Considerations

Use the following general guide-line when designing printed circuit boards (PCB):

Decoupling Capacitor

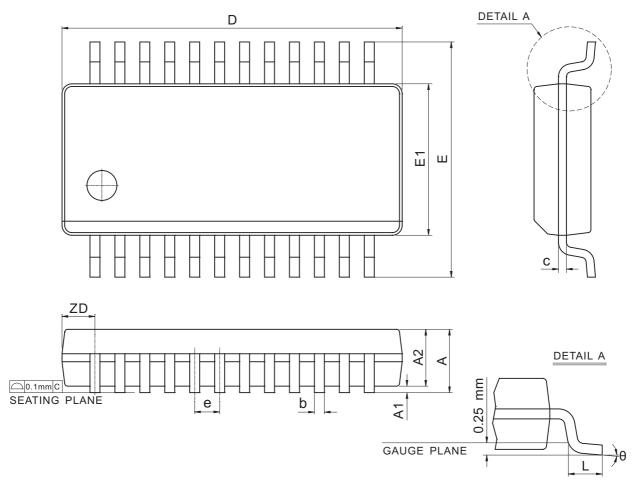
Place a decoupling capacitor e.g. 4.7uF between VDD and GND pins of the SCT2016. Locate the capacitor as close to the SCT2016 as possible. The necessary capacitance depends on the LED load current and dimming frequency.

External Resistor (R_{EXT})


Locate the external resistor as close to the REXT pin in as possible to avoid the noise influence.

Power and Ground

Maximizing the width and minimizing the length of V_{DD} and GND trace improve efficiency and ground bouncing by effect of reducing both power and ground parasitic resistance and inductance. A small value of resistor e.g. 10Ω series in power input of the SCT2016 in conjunction with decoupling capacitor shunting the ICs is recommended. Separating and feeding the LED power from another stable supply terminal V_{LED} is strongly recommended.


Package Dimension

TSSOP20

Symbol	D	Dimension (mm)			Dimension (mil)			
Зуппоот	Min.	Nom.	Max.	Min.	Nom.	Max.		
Α	-	-	1.20	-	-	47.2		
A1	0.05	-	0.15	2.0	-	5.9		
A2	0.80	0.90	1.05	31.5	35.4	41.3		
b	0.19	-	0.30	7.5	-	11.8		
С	0.09	-	0.20	3.5	-	7.9		
D	6.40	6.50	6.60	252.0	255.9	259.8		
E1	4.30	4.40	4.50	169.3	173.2	177.2		
E		6.40 BSC		252.0 BSC				
е		0.65 BSC		25.6 BSC				
L1		1.00 REF		39.4 REF				
L	0.50	0.60	0.75	19.7	23.6	29.5		
S	0.20	-	-	7.9	-	-		
θ	0°	-	8°	0°	-	8°		
D1	3.79	3.99	4.19	149.2	157.1	165.0		
E2	2.60	2.80	3.00	102.4	110.2	118.1		

SSOP24

Symbol	Dimension (mm)			Dimension (mil)			
Syllibol	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	1.35	1.63	1.75	53.1	64.2	68.9	
A1	0.1	0.15	0.25	3.9	5.9	9.8	
A2	-	-	1.5	-	-	59.1	
b	0.2	-	0.3	7.9	-	11.8	
С	0.18	-	0.25	7.1	-	9.8	
D	8.56	8.66	8.74	337.0	340.9	344.1	
E	5.79	5.99	6.2	228.0	235.8	244.1	
E1	3.81	3.91	3.99	150.0	153.9	157.1	
е		0.635 BSC			25.0 BSC		
L	0.41	0.635	1.27	16.1	25.0	50.0	
ZD	0.838 REF				33.0 REF		
θ	0°	-	8°	0°	-	8°	

Revision History (check up-to-date version)

Data Sheet Version	Remark
V02_01	Descriptions added

Information provided by StarChips Technology is believed to be accurate and reliable. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Starchips can not assume responsibility and any problem raising out of the use of the circuits. Starchips reserves the right to change product specification without prior notice.

StarChips Technology, Inc. _____www.starchips.com.tw