SK 45 UT

SEMITOP® 3

Antiparallel Thyristor Module

SK 45 UT

Preliminary Data

Features

- Compact Design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

Typical Applications

- Soft starters
- Light control (studios, theaters...)
- Temperature control

V _{RSM} V	V _{RRM} , V _{DRM}	I _{RMS} = 47 A (full conduction) (T _s = 85 °C)
900	800	SK 45 UT 08
1300	1200	SK 45 UT 12
1700	1600	SK 45 UT 16

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Symbol	Conditions	Values	Units
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{RMS}	W1C ; sin. 180° ; T _s = 100°C	33	Α
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		W1C ; sin. 180° ; T _s = 85°C	47	Α
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{TSM}	T _{vi} = 25 °C ; 10 ms	450	Α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T _{vi} = 125 °C ; 10 ms	380	Α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i²t	T _{vj} = 25 °C ; 8,310 ms	1000	A²s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T _{vj} = 125 °C ; 8,310 ms	720	A²s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V_{T}		max. 1,9	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_{T(TO)}$	T _{vj} = 125 °C	max. 1	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r_T	T _{vj} = 125 °C	max. 10	mΩ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_{DD};I_{RD}$		max. 10	mA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{gd}	1 ,	1	μs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{gr}		2	μs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(dv/dt) _{cr}			V/µs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				A/µs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_q		80	μs
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I _H	9	80 / 150	mA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,,	150 / 300	mA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V_{GT}		min. 3	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{GT}		min. 100	mA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V_{GD}	T_{vj} = 125 °C; d.c.	max. 0,25	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I_{GD}	T _{vj} = 125 °C; d.c.	max. 3	mA
Sin 180° per thyristor	R _{th(i-s)}	cont. per thyristor	1,2	K/W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	sin 180° per thyristor	1,24	K/W
Sin 180° per W1C	$R_{th(j-s)}$	·	0,6	K/W
T _{stg}		sin 180° per W1C	· · · · · · · · · · · · · · · · · · ·	
T _{solder} terminals, 10s 260 °C V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm M _t a n 30 g				_
V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm M _t a m 300 g	T_{stg}		-40 +12 5	
V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm M _t a n 300 g	T _{solder}	terminals, 10s	260	°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
a m/s² g	M_s	Mounting torque to heatsink	2,5	Nm
m 30 g	M_t			
<u> </u>	а			m/s²
Case SEMITOP® 3 T 13	m		30	g
	Case	SEMITOP® 3	T 13	

SK 45 UT

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.