
SK 45 STA

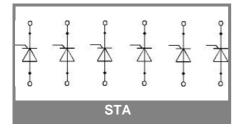
SEMITOP® 3

Six Separated Thyristors Module

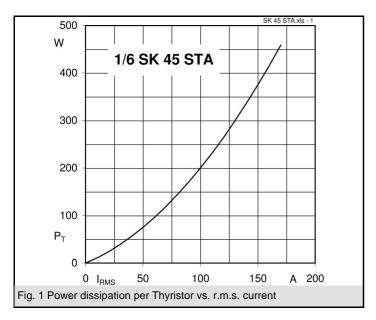
SK 45 STA

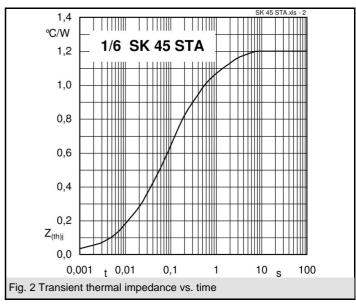
Preliminary Data

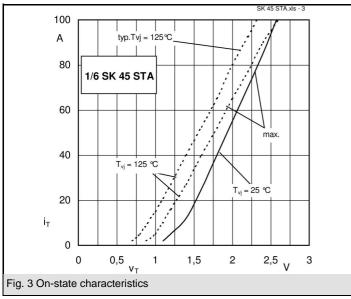
Features

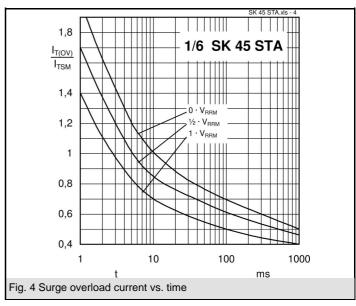

- · Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Glass passivated thyristor chipsUp to 1600 V reverse voltage

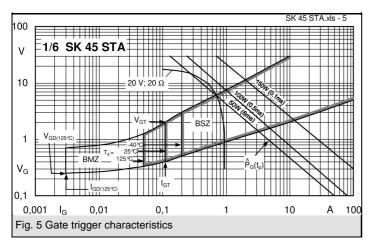
Typical Applications*

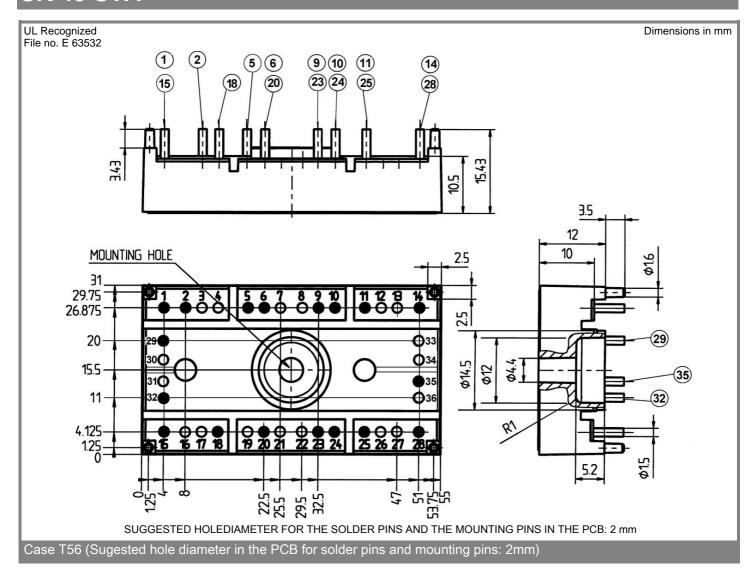

- Soft starters
- Light control (studios, theatres...)
- Temperature control

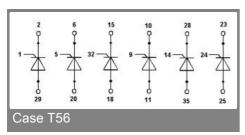

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{TRMS} = 41 A (T _s = 75 °C)
900	800	SK 45 STA 08
1300	1200	SK 45 STA 12
1700	1600	SK 45 STA 16


Character	Characteristics T _h = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units		
I _{rms} (W1C)	sin. 180°; T _S = 100°C	33	Α		
I _{rms} (W1C)	sin. 180°; T _S = 85°C	47	Α		
			Α		
I _{TSM} /I _{FSM}	T _{vi} = 25 (125) °C; 10 ms	450 (380)	Α		
I²t	T _{vj} = 25 (125) °C; 8,3 10 ms ms	1000 (720)	A²s		
T _{stg}		- 40 + 125	°C		
T _{solder}	terminals, 10 s	260	°C		
Thyristor					
(dv/dt) _{cr}	$T_{vj} = 125 ^{\circ}C$	1000	V/µs		
(di/dt) _{cr}	$T_{vj} = 125 ^{\circ}\text{C}; f = 50 \dots 60 \text{Hz}$	50	A/µs		
t_q	$T_{vj} = 125 ^{\circ}\text{C}$; typ.	80	μs		
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	80 / 150	mA		
I_{L}	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ.} / \text{max}.$	150 / 300	mA		
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_{T} = 75 \text{A}); \text{max}.$	1,9	V		
$V_{T(TO)}$	$T_{vi}^{yj} = 125 ^{\circ}\text{C}$	max. 1	V		
r _T	T _{vi} = 125 °C	max. 10	$m\Omega$		
I_{DD} , I_{RD}	$T_{vj}^{'j}$ = 125 °C; $V_{DD} = V_{DRM}^{'}$; $V_{RD} = V_{RRM}^{'}$	max. 10	mA		
$R_{th(j-s)}$,	1,2	K/W		
T _{vj}		- 40 + 125	°C		
V_{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	3	V		
I _{GT}	$T_{vi}^{y} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA		
V_{GD}	T_{vi}^{y} = 125 °C; d.c.	0,25	V		
I_{GD}	T _{vj} = 125 °C; d.c.	3	mA		
Diode					
V_{F}	$T_{vj} = {^{\circ}C}; (I_F = A); max.$		V		
$V_{(TO)}$	$T_{vi} = {^{\circ}C}$		V		
r _T	$T_{vj} = {^{\circ}C}$		mΩ		
I_{RD}	$T_{vj} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA		
$R_{th(j-s)}$			K/W		
T_{vj}			°C		
Mechanical data					
V_{isol}	a.c. 50 Hz; r.m.s.; 1 min / 1s	2500 (3000)	V		
M_1	mounting torque	2,5	Nm		
w		30	g		
Case	SEMITOP® 3	T56			




SK 45 STA





SK 45 STA

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.