## - <br> -



## REGISTRATION SENSORS

Contrast, color, luminescence, glare, fork, register, SICK array and markless sensors

## REGISTER AT WWW.SICK.COM TODAY AND ENJOY ALL THE BENEFITS

$\square$ Select products, accessories, documentation and software quickly and easily.
$\square$ Create, save and share personalized wish lists.
$\square$ View the net price and date of delivery for every product.
$\square$ Requests for quotation, ordering and delivery tracking made easy.
$\square$ Overview of all quotations and orders.
$\square$ Direct ordering: submit even very complex orders in moments.
$\square$ View the status of quotations and orders at any time.
Receive e-mail notifications of status changes.
$\square$ Easily repeat previous orders.

- Conveniently export quotations and orders to work with your systems.



## SERVICES FOR MACHINES AND SYSTEMS: SICK LifeTime Services

Our comprehensive and versatile LifeTime Services are the perfect addition to the comprehensive range of products from SICK. The services range from product-independent consulting to traditional product services.


Consulting and design
Safe and professional


Product and system support
Reliable, fast and on-site


Verification and optimization
Safe and regularly inspected


Upgrade and retrofits
Easy, safe, economical


Training and education
Practical, focused and professional



GENERAL INFORMATION
About SICK


CONTRAST SENSORS
KTM Core, KTM Prime, KT3L Laser, KT5, KTL5-2 Fiber Optic, KT6-2,
KT8, KT10-2


COLOR SENSORS
CSM, CS8


LUMINESCENCE SENSORS
LUTM, LUT3-6, LUT8, LUT9


Glare


REGISTER SENSORS
RS10, RS25

ARRAY SENSORS
A×20

MARKLESS SENSORS
ML20


SMART SENSOR SOLUTIONS

ACCESSORIES

## A <br> WE DELIVER "SENSOR INTELLIGENCE."

SICK sensor solutions for industrial automation are the result of exceptional dedication and experience. From development all the way to service: The people at SICK are committed to investing all their expertise in providing with the very best sensors and system solutions possible.

## A company with a culture of success

Almost 7,000 people are on staff, with products and services available to help SICK sensor technology users increase their productivity and reduce their costs. Founded in 1946 and headquartered in Waldkirch, Germany, SICK is a global sensor specialist with more than 50 subsidiaries and representations worldwide. The people work with pleasure at SICK.

This is demonstrated by the accolades that the company is regularly awarded in the "Great Place to Work" competition. This lively corporate culture holds strong appeal for qualified and skilled persons. In SICK, they are part of a company that ensures an excellent balance between career progression and quality of life.


## Innovation for the leading edge

SICK sensor systems simplify and optimize processes and allow for sustainable production. SICK operates at many research and development centers all over the world. Co-designed with customers and universities, our innovative sensor products and solutions are made to give a decisive edge. With an impressive track record of innovation, we take the key parameters of modern production to new levels: reliable process control, safety of people and environmental protection.


## A corporate culture for sustainable excellence

SICK is backed by a holistic, homogeneous corporate culture. We are an independent company. And our sensor technology is open to all system environments. The power of innovation has made SICK one of the technology and market leaders - sensor technology that is successful in the long term.


## A

## "SENSOR INTELLIGENCE." FOR ALL REQUIREMENTS

SICK is a renowned expert in many industries, and is entirely familiar with the critical challenges they face. While speed, accuracy and availability take center stage in all industries, technical implementations vary greatly. SICK puts its vast experience to use to provide with precisely the solution you need.

For applications worldwide

Hundreds of thousands of installations and applications go to prove that SICK knows the different industries and their processes inside out. This tradition of uncompromising expertise is ongoing: As we move into the future, we will continue
to design, implement and optimize customized solutions in our application centers in Europe, Asia and North America. You can count on SICK as a reliable supplier and development partner.


## For your specific industry

With a track record of proven expertise in a great variety of industries, SICK has taken quality and productivity to new heights. The automotive, pharmaceutical, electronics and solar industries are just a few examples of sectors that benefit from our know-how. In addition to increasing speed and improving traceability in warehouses and distribution centers, SICK solutions provide accident protection for automated guided vehicles. SICK system solutions for analysis and flow measurement of gases and liquids enable environmental protection and sustainability in, for example, energy production, cement production or waste incineration plants.

## For performance across the board

SICK provides the right technology to respond to the tasks involved in industrial automation: measuring, detecting, monitoring and controlling, protecting, networking and integrating, identifying, positioning. Our development and industry experts continually create groundbreaking innovations to solve these tasks.


## A SERVICES FOR MACHINES AND SYSTEMS: SICK LifeTime Services

SICK LifeTime Services is a comprehensive set of high-quality services provided to support the entire life cycle of products and applications from plant walk-through to upgrades. These services increase the safety of people, boost the productivity of machines and serve as the basis for our customers' sustainable business success. LifeTime Services range from product-independent consulting to traditional product services and are characterized by extensive industry expertise and more than 60 years of experience.



Consulting and
design

- Plant walk-through
- Risk assessment
- Safety concept
- Safety software and hardware design
- Validation of functional safety
- CE-conformance check
$\rightarrow$ www.sick.com/service


Product and
system support

- Installation
- Commissioning
- Start-up support
- Calibrations
- Telephone support
- 24-hour helpline
- SICK Remote Service
- Troubleshooting on site
- Repairs
- Exchange units
- Extended warranty


Verification and
optimization

- Inspection
- Stop time measurement
- Machine safety inspection
- Electrical equipment check
- Accident investigation
- Initial verification
- Performance check
- Maintenance


Upgrade and
retrofits

- Upgrade services


## VERSATILE PRODUCT RANGE FOR INDUSTRIAL AUTOMATION

From the simple acquisition task to the key sensor technology in a complex production process: With every product from its broad portfolio, SICK offers a sensor solution that best combines cost effectiveness and safety.

## Photoelectric sensors

- MultiTask photoelectric sensors
- Miniature photoelectric sensors
- Small photoelectric sensors

Proximity sensors

- Inductive proximity sensors
- Capacitive proximity sensors

Magnetic cylinder sensors

- Analog positioning sensors
- Sensors for T-slot cylinders
- Sensors for C-slot cylinders


## Registration sensors

- Contrast sensors
- Fork sensors
- Markless sensors
- Array sensors
- Color sensors
- Luminescence sensors


## Automation light grids

- Measuring automation light grids types
- Array sensors
- Register sensors

- Magnetic proximity sensors
- Sensor adapters for other cylinder


Opto-electronic protective devices

- Safety laser scanners
- Safety light curtains
- Safety camera systems
- Multiple light beam safety devices
- Single-beam photoelectric safety switches
- Mirror columns and device columns


## Safety switches

## - Electro-mechanical safety switches

- Safety command devices
- Non-contact safety switches
sens:Control - safe control solutions
- Safety controllers
- Safety relays
- Safe sensor cascade

Gas analyzers

- Gas transmitters
- Extractive gas analyzers

Dust measuring devices

- Scattered light dust measuring devices
- Transmittance dust measuring devices

Analyzer solutions

- CEMS solutions
- Process solutions



## Traffic sensors

- Tunnel sensors
- Visual range measuring devices
- Overheight detectors


Ultrasonic gas flow measuring devices

- Volume flow measuring devices
- Gas flow meters
- Mass flow measuring devices
- Flow velocity measuring devices


## Motor feedback systems

- Motor feedback system rotary HIPERFACE ${ }^{\circledR}$
- Motor feedback system rotary HIPERFACE DSL ${ }^{\oplus}$
- Motor feedback system rotary incremental

HIPERFACE ${ }^{\circledR}$

- Flow computers
- Motor feedback system rotary incremental with commutation
- Motor feedback system linear

- Wire draw encoders
- Absolute encoders
- Safety encoders
- Linear encoders


## Encoders

Identification solutions

- Bar code scanners
- Hand-held scanners
- Image-based code readers
- RFID


## Vision

- Vision sensors
- High-end cameras


## Distance sensors

- Short range distance sensors (displacement)
- Mid range distance sensors
- Long range distance sensors
- Linear measurement sensors
- Ultrasonic sensors
- Double sheet detection
- Optical data transmission
- Position finders
- Smart cameras

Detection and ranging solutions

- 2D laser scanners
- 3D laser scanners

Fluid sensors

- Level sensors
- Flow sensors
- Pressure sensors



## System solutions

- Customized analyzer systems
- Collision awareness systems
- Flexible automation systems
- Object detection systems
- Profiling systems
- Quality control systems
- Security systems
- Track and trace systems


## CONTRAST SENSORS



## SICK - The pioneer in contrast sensors for more than 60 years

Contrast sensors are primarily used in packaging or printing machines to recognize brands. They can also be used in any application that is based on a distinction between differences in contrast. SICK's line of KT contrast sensors detects even the smallest contrasts at the highest speeds, such as print marks on foils or packaging. They detect minute grayscale variations between the mark and the background on matte, shiny or transparent surfaces. A variety of device
types with different contrast resolution methods and teach-in versions are available to meet wide-ranging requirements.

## Your benefits

- Able to process all packaging materials (yellow mark/white background), resulting in high machine throughput
- Reliable operation, even with jittering webs and high-gloss materials
- High positioning accuracy improves packaging quality
- Simple teach-in and highly visible light spot ensure easy setup
- Simple to integrate into machines due to compact design
- Interchangeable lenses for maximum mounting flexibility
- A range of sensing distances, light spot directions and a $90^{\circ}$ rotatable plug enables optimal integration
- Application-specific teach-in processes provide maximum flexibility



## D

|  | General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-16Product family overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-20 |  |  |
| :---: | :---: | :---: | :---: |
|  | KTM Core . . . . . . . . . . . . . . B-24 <br> Mini, easy, speedy |  | KTL5-2 Fiber Optic . . . . . . . . . B-58 Contrast sensors with fiber-optic cables |
|  | KTM Prime $\qquad$ B-30 Mini, easy, speedy, robust |  | KT6-2 B-66 <br> Easy contrast detection |
|  | KT3L Laser . . . . . . . . . . . . . B-38 <br> Long sensing distance - precise detection |  | KT8. . . . . . . . . . . . . . . . . . B-72 <br> Laser contrast sensor and CAN communication |
|  | KT5. . . . . . . . . . . . . . . . . . B-44 <br> Contrast sensor in standard metal housing |  | KT10-2. . . . . . . . . . . . . . . . B-80 <br> The industry choice for high-speed and precision mark detection |

## A CLEAR DISTINCTION FOR ALL CONTRASTS

It is not always easy to detect subtle differences. Only those with a marked instinct for details will notice fine nuances and deviations. If this level of sensitivity is required, then SICK contrast sensors are what you need.

When controlling packaging processes, sensors must detect print marks quickly and precisely. And if the grayscale differences between the mark and the background are extremely weak, SICK contrast sensors are the ideal solution.

Wherever print marks are used to trigger a switching signal - whether on paper, glossy foil, or other packaging materials - contrast sensors can be used. With over 50 years of experience, SICK is a deserved market leader in this field.


## SHOWING MARKS IN THEIR TRUE LIGHT

SICK contrast sensors detect minimum contrast levels at maximum speeds, for example print marks on foil or packaging. Based on the reflection principle, they detect even weak grayscale variations between the mark and the background on matte, shiny, or transparent surfaces.



Small and compact

- Universal application thanks to 3-color LED technology
- Simple teach-in for setting transmission color, switching point, and gloss adjustment
- Extremely compact housing takes up little space
- Stainless-steel housing available


## Particularly suitable for

- Space restrictions
- High speeds


Robust and flexible

- Bar graph for visualizing the contrast quality
- Variability via different sensing distances and light spots
- Robust, multifunctional housing


## Particularly suitable for

- Uses in the packing industry
- Highly variable contrast conditions

- Very accurate detection at high production speeds
- Permanent display of detection quality


## Particularly suitable for

- Use in the print and paper industry
- High speeds
- Minute contrasts
- Glossy materials

istant and
- Laser technology
- Large detection distance and small, precise light spot


## Particularly suitable for

- Tiny marks, for example bar codes
- Large operating detection distances of up to 600 mm


## TECHNOLOGY

Print marks on product packaging are indispensable in production processes. To detect a wide variety of print marks, SICK offers contrast sensors with a range of different technologies.

## Teach-in

Once a mark is detected, sensor teach-in is very simple. Depending on the field of application, teach-in can be triggered in various ways.

## Dynamic teach-in

- Teach-in during operation
- No interruption of material flow
- Teach-in can also be triggered via an external control cable


## Static 2-point teach-in

- Extremely simple teach-in when machine is stopped


## Manual adjustment via potentiometer

- Very precise adjustment when machine is stopped

The different teach-in options assist the operator in configuring the contrast sensor teach-in, even under the toughest installation conditions, to ensure trouble-free operation.

## 3-color LED technology

## Maximum detection reliability

- During teach-in, the sensor sends three different light sources (red, green, and blue) to the object to be detected, and then selects the emitted light that will achieve the highest contrast value
- This allows the contrast sensors to detect all color combinations, even finely resolving combinations such as yellow on white. Therefore, the sensonr can be used everywhere.


Black marks on high-gloss target

Colored marks on patterned
background



## White LED technology

## Neutral white emitted light is suitable for

- Detecting different marks with one setting
- Reading colored codes
- Reliable detection when there is printing on the background between marks, e.g. tubes

Small black marks on white background

Light marks on a dark background


Colored pharma bar code

## TYPICAL APPLICATIONS

## Detecting print marks



Detection of print marks for precise controlling of packaging processes on horizontal and vertical filling and sealing machines, labeling and filling plants. SICK contrast sensors detect these marks reliably and with precision.


Contrasts do not just appear on packaging materials. As well as detecting marks, SICK contrast sensors demonstrate their reliability by distinguishing between surface characteristics. For example, wafers have different, sometimes highly glossy surfaces depending on the layer. During wafer production, these surfaces must be positioned properly to ensure that the correct side of the wafer is processed further. The highperformance contrast sensors reliably detect the different surface coatings on the various sides of the wafer - without any complex teach-in.

## WIDE PRODUCT PORTFOLIO

SICK contrast sensors have an impressive range of options, offering the right solution for almost any challenge.


Their small housing means they can be easily installed even where space is limited: At a height of just 31.5 mm and with robust metal inserts with a female thread, KTM Core and KTM Prime enable simple mounting.


Quick format change thanks to the connection between the contrast sensor and an automation system via an IO-Link interface. Even the standard functions go far beyond the scope of straightforward binary $0 / 1$ switching signals.


The KTM Prime Inox (washdown design) is extremely durable and ideally suited to intensive cleaning and disinfection. Its chemical material resistance and absolute impermeability enable the sensor's long-term use, even in harsh environments.

## PRODUCT FAMILY OVERVIEW

|  | KTM Core |  |
| :---: | :---: | :---: |
|  | Mini, easy, speedy | Mini, easy, speedy, robust |
| Technical data overview |  |  |
| Dimensions (W x H x D ) | $31.5 \mathrm{~mm} \times 21 \mathrm{~mm} \times 12 \mathrm{~mm}$ | $31.5 \mathrm{~mm} \times 21 \mathrm{~mm} \times 12 \mathrm{~mm}$ $48.6 \mathrm{~mm} \times 22.2 \mathrm{~mm} \times 15.25 \mathrm{~mm}$ |
| Sensing distance | 12.5 mm | $12.5 \mathrm{~mm} / 11 \mathrm{~mm}$ |
| Light sender, type of light | LED, white | LED, RGB LED, white <br> - <br> - |
| Light spot size | $\begin{aligned} & \varnothing 1 \mathrm{~mm} \\ & \varnothing 2 \mathrm{~mm} \end{aligned}$ | $\begin{gathered} \emptyset 2 \mathrm{~mm} \\ 1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm} \end{gathered}$ |
| Switching frequency | 10 kHz | 15 kHz |
| Response time | $50 \mu \mathrm{~s}$ | $35 \mu \mathrm{~s}$ |
| Adjustment | Potentiometer, manual / Potentiometer, screw driver | 2-point teach-in static/dynamic + proximity to mark |

Connection type

Connector M8, 4-pin Cable with connector M12, 4-pin

Connector M8, 4-pin Cable with connector M12, 4-pin

At a glance


KT3L Laser


KT5

Long sensing distance - precise detection
$12 \mathrm{~mm} \times 40 \mathrm{~mm} \times 22 \mathrm{~mm}$

40 mm


Static 2-point teach-in

## Connector M12, 4-pin

$30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$

10 mm 20 mm 40 mm 50 mm

LED, RGB
LED, white
LED, red
LED, green
$1.2 \mathrm{~mm} \times 4.2 \mathrm{~mm}$
$1.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$
$1.1 \mathrm{~mm} \times 4.2 \mathrm{~mm}$
10 kHz
$50 \mu \mathrm{~s}$
Manual adjustment, potentiometer 1-point-teach-in

> Static 2-point teach-in

Without, automatic contrast detection

> Dynamic teach-in

Static 2-point teach-in with manual fine adjustment
Connector M12, 4-pin
Connector M12, 5-pin

- Very small housing
- Precise, small laser spot
- Sensing distance up to 60 mm
- Simple 2-point teach-in
- Switching frequency of $1,5 \mathrm{kHz}$
- Reliable operation for jittering materials
- Best contrast resolution thanks to RGB LED technology
- Intuitive 10-segment bar display indicates the detection reliability
- Dynamic or static teach-in method or manual potentiometer
- Switching frequency of 10 kHz
- Automatic gloss adjustment for highly reflective materials
- Various sensing distances and light spot directions
- M12 plug can be rotated $90^{\circ}$


## PRODUCT FAMILY OVERVIEW

|  | KTL5-2 Fiber Optic | KT6-2 |
| :---: | :---: | :---: |
|  | Contrast sensors with fiber-optic cables | Easy contrast detection |
| Technical data overview |  |  |
| Dimensions (W x H x D ) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |
| Sensing distance | Dependent on the fiber-optic cable | 10 mm |
| Type of light | LED, RGB <br> - <br> LED, green <br> - | LED, RGB |
| Light spot size | - | $1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ |
| Switching frequency | 10 kHz | 5 kHz |
| Response time | $50 \mu \mathrm{~s}$ | $100 \mu \mathrm{~s}$ |
| Adjustment | Manual adjustment, potentiometer Without, automatic contrast detection <br> Dynamic teach-in <br> Static 2-point teach-in | Static 2-point teach-in |
| Connection type | Connector M12, 4-pin Connector M12, 5-pin | Connector M12, 4-pin |

## At a glance

- Various heat-resistant fiber-optic cable models are available
- Various teach-in methods, including potentiometer
- Analog output
- Switching frequency of 10 kHz
- 3-color RGB LED technology
- 2-point teach-in (mark and background)
- Tough, metal housing
- Automatic gloss adjustment for highly reflective materials
- 10 mm sensing distance
- Light exits at end or side, based on model
- Common mounting footprint


KT8


KT10-2

Laser contrast sensor and CAN communication
$30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$
10 mm
20 mm
150 mm
LED, RGB
-
Laser, red $0.8 \mathrm{~mm} \times 4 \mathrm{~mm}$ $1.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$ $\varnothing 0.3 \mathrm{~mm}$
$\emptyset 3 \mathrm{~mm}$
22.5 kHz

17 kHz
$22 \mu \mathrm{~s}$
$30 \mu \mathrm{~s}$
Static 2-point teach-in, Dynamic teach-in (min/max)

Male connector M12, 8-pin
Connector M12, 5-pin
$30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$
10 mm

LED, RGB
-
-
$0.8 \mathrm{~mm} \times 4 \mathrm{~mm}$

25 kHz
$20 \mu s$

Static 2-point teach-in, Dynamic teach-in (min/max)
Connector M12, 5-pin

- Very low jitter (< $10 \mu \mathrm{~s}$ )
- Precise light spot
- Best contrast resolution thanks to RGB LED technology
- Two interchangeable light exits
- Automatic drift correction
- Fast switching frequency of 25 kHz
- Easy-to-read bar graph display


## MINI, EASY, SPEEDY



## ( $\epsilon$ 道 (

Additional information Detailed technical data ..... B-25
Ordering information ..... B-26
Dimensional drawings ..... B-26
Adjustments ..... B-27
Connection diagram ..... B-27
Sensing distance ..... B-27
Setting the switching threshold ..... B-27
Recommended accessories ..... -28

## Product description

Top performance for universal, spacesaving use in the packaging industry: The new KTM core contrast sensor from SICK features a high grayscale resolution and is integrated into a small, tried-and-tested housing. The optimized OES4 ASIC technology and a response time of $50 \mu$ s ensure reliable and ac-
curate detection of contrast marks, even on glossy materials. The easy adjustment method ensures greater flexibility during commissioning. The KTM reliably detects marks even in conditions with weak contrast ratios and is therefore ideal for use in a wide range of applications.

At a glance

- Small, tried-and tested housing
- High grayscale resolution
- Very large dynamic range means reliable detection of contrasts on glossy materials


## Your benefits

- Small housing allows installation even where space is limited
- Powerful, fast contrast sensor ensures high machine throughput
- Switching frequency: 10 kHz
- White light
- Good contrast resolution and a very large dynamic range ensure good detection performance on glossy materials, thus increasing the range of application possibilities
- Quick and easy configuration

[^0]
## Detailed technical data

## Features

| Dimensions (W x H x D) | 31.5 |
| :--- | :--- |
| Sensing distance | 12.5 |
| Housing design (light emission) | Rec |
| Sensing distance tolerance | $\pm 3$ |
| Light source ${ }^{\text {1) }}$ | LED |
| Type of light | Whi |
| Max. web speed tech-in (dynamic) ${ }^{\text {2) }}$ | $1 \mathrm{~m} / \mathrm{Pot}$ |
| Teach-in mode | Ligh |
| Output function |  |
| ${ }^{\text {1) }}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$. |  |

```
31.5 mm x 21 mm x 12 mm
12.5 mm
Rectangular
\pm mm
LED
White
1 m/s
Potentiometer, manual / Potentiometer, screw driver (depending on type)
Light/dark switching
```

${ }^{1)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.
${ }^{2)}$ At a mark size of 4 mm .

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 12 V DC ... 24 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | $<50 \mathrm{~mA}$ |
| Switching frequency ${ }^{4)}$ | 10 kHz |
| Response time ${ }^{5}$ | $50 \mu \mathrm{~s}$ |
| Jitter | $25 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{S}^{-}} \leq 2 \mathrm{~V} /$ LOW approx. 0 V , NPN: HIGH $=$ approx. $\mathrm{V}_{\mathrm{S}} / \mathrm{LOW} \leq 2 \mathrm{~V}$ |
| Outputy type | PNP, NPN |
| Output current $I_{\text {max. }}{ }^{6}$ ) | 50 mA |
| Retention time (ET) | 28 ms , non-volatile memory |
| Connection type | Connector M8, 4-pin / Cable with connector M12, 4-pin (depending on type) |
| Protection class | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 67 |
| Weight |  |
| Connector M8, 4-pin | 20 g |
| Cable with connector M12, 4-pin | 70 g |
| Housing material | Plastic, ABS |

${ }^{1)}$ Limit values: DC $12 \mathrm{~V}(-10 \%)$... DC $24 \mathrm{~V}(+20 \%)$. Operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
4) With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6)}$ At supply voltage $>24 \mathrm{~V}, \mathrm{I}_{\max }=30 \mathrm{~mA} . \mathrm{I}_{\max }$ is consumption count of all $\mathrm{Q}_{\mathrm{n}}$.

## Ambient data

| Ambient operating temperature | -1 |
| :--- | :--- |
| Ambient storage temperature | A |
| Shock load |  |
| UL File No. |  |
|  | Connector M8, 4-pin |

```
-10 ' C ... +55 ' C
```

$-20^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$

According to IEC 60068

NRKH.E348498 / NRKH.E348498 \& NRKH7.E348498 (depending on type) NRKH.E348498

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/KTM_Core
KTM Core

| Adjustment | Light spot size (distance) | Connection type | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
| Potentiometer, manual | $\varnothing 1 \mathrm{~mm}(10 \mathrm{~mm})$ |  | KTM-MB8A191P | 1066885 |
| Potentiometer, screw driver | $\varnothing 2 \mathrm{~mm}(12.5 \mathrm{~mm})$ | Connector M8, 4-pin | KTM-MB31191P | 1062203 |
|  | $\varnothing 2 \mathrm{~mm}(12.5 \mathrm{~mm})$ | Connector M8, 4-pin | KTM-MB31111P | 1062202 |
|  | Cable with connector M12, 4-pin | KTM-MB31112P | 1070053 |  |

Dimensional drawings (Dimensions in mm (inch))

KTM-xBxxx91x

(1) Optical axis receiver
(2) Optical axis sender
(3) Fixing hole M3
(4) Light/ dark rotary switch: L = light switching, $D=$ dark switching

KTM-xBxxx12x


## KTM-xBxxx11x


(1) Optical axis receiver
(2) Optical axis sender
(3) Fixing hole M3
(4) Light/ dark rotary switch: L = light switching, $D=$ dark switching
(1) Optical axis receiver
(2) Optical axis sender
(3) Fixing hole M3
(4) Light/ dark rotary switch: $L=$ light switching, $D=$ dark switching

## Adjustments

## KTM Core


(1) Status indicator LED, yellow: Status switching output Q (dark switching)
(2) Status indicator LED green: supply voltage on
(3) Switching threshold adjustment

## Sensing distance



## Setting the switching threshold

For example dark switching

1. Position background


Start at "+" (right-hinged). Turn potentiometer in direction "-" until the yellow LED goes out.
2. Position mark


Yellow LED lights up.
Continue to turn the potentiometer in direction „-" until the yellow LED goes out again.

## Connection diagram

Cd-086

-     - $\operatorname{lin}_{i} \underline{1}+(\mathrm{L}+)$
$\rightarrow$ whti $\frac{2}{=} Q_{\text {NPN }}$
blu! 3 -(M)
$\rightarrow \underset{-\quad \text { blki }}{\underline{4}}$ Q $_{\text {PNP }}$
$D$


## Recommended accessories

## Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Plate L for universal clamp bracket | BEF-KHS-L01 | 2023057 |
|  | Zinc plated steel (sheet), Diecast zinc (clamp) | Plate N08 for universal clamp bracket | BEF-KHS-N08 | 2051607 |
|  | Stainless steel 1.4571 (sheet), Stainless steel 1.4408 (clamp) | Plate N08N for universal clamp bracket | BEF-KHS-N08N | 2051616 |
|  | Steel, zinc coated | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} \times 150 \mathrm{~mm}$, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Mounting brackets and mounting plates

Mounting brackets

| Figure | Material | Description | Part no. |  |
| :---: | :---: | :--- | :--- | :--- |
|  | Stainless steel | Mounting bracket for wall mounting | Type |  |
|  | Steel, zinc coated | Mounting bracket for floor mounting | BEF-W100-A |  |

## Mounting plates



Plug connectors and cables
Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |

M8, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-G02M | 6009870 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | D0L-0804-G05M | 6009872 |
|  | Female connector, M8, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-W02M | 6009871 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-W05M | 6009873 |

$\rightarrow$ For additional accessories, please see page K-240

## MINI, EASY, SPEEDY, ROBUST

## © IO-Link <br> 

Additional information
$\qquad$
Ordering information . . . . . . . . . . B-32
Dimensional drawings . . . . . . . . . B-33
Adjustments . . . . . . . . . . . . . . . . . .B-33
Connection diagram. . . . . . . . . . . B-33
Sensing distance . . . . . . . . . . . . . .B-34
Setting the switching threshold . .B-34
Recommended accessories . . . . B-36

## Product description

Top performance for universal, spacesaving use in the packaging industry even under harsh conditions: The new KTM prime contrast sensor from SICK features a high grayscale resolution and is integrated into a small, tried-and-tested housing that is also available in stainless steel. The optimized OES4 ASIC technology and a response time of $35 \mu$ s ensure reliable and accurate detection of contrast marks, even on glossy materials. The various teach-in methods (dynamic, static, and

## At a glance

- Small, tried-and-tested housing, also available in stainless steel
- High grayscale resolution
- Very large dynamic range means reliable detection of contrasts on glossy materials


## Your benefits

- Small housing allows installation even where space is limited
- Powerful, fast contrast sensor ensures high machine throughput
- Three-color LED technology allows a reliable process, with contrast marks detected even in conditions with weak contrast ratios
- Good contrast resolution and a very large dynamic range ensure good detection performance on glossy materials, thus increasing the range of application possibilities
switching threshold near the marks) ensure greater flexibility during commissioning. The integrated IO-Link interface can be used to access the parameter settings. This speeds up and simplifies format changes. The KTM reliably detects marks even in conditions with weak contrast ratios and is therefore ideal for use in a wide range of applications; in the stainless steel version, it can even be used in harsh environments during intensive cleaning.
- Static and dynamic teach-in in one variant
- Switching frequency: 15 kHz
- KTM Prime with IO-Link functions
- Various teach-in methods enable more flexible commissioning
- Long service life, even in harsh environments, thanks to stainless steel housing; as a result, excellent system throughput and low spare parts costs
- Enhanced diagnostics and visualization of sensor parameters, as well as quick and easy format changes, since parameter settings can be downloaded via IO-Link

[^1]

## Detailed technical data

## Features

|  | KTM Prime | KTM Prime Inox |
| :--- | :--- | :--- | :--- |
| Dimensions (W x H x D) | $31.5 \mathrm{~mm} \times 21 \mathrm{~mm} \times 12 \mathrm{~mm}$ | $48.6 \mathrm{~mm} \times 22.2 \mathrm{~mm} \times 15.25 \mathrm{~mm}$ |
| Sensing distance | 12.5 mm | 11 mm |
| Housing design (light emission) | Rectangular |  |
| Sensing distance tolerance | $\pm 3 \mathrm{~mm}$ |  |
| Light source ${ }^{1)}$ | LED |  |
| Type of light | White/RGB |  |
| Wave length | $470 \mathrm{~nm}, 525 \mathrm{~nm}, 625 \mathrm{~nm}$ |  |
| Light spot direction ${ }^{2)}$ | Vertical |  |
| Max. web speed tech-in (dynamic) ${ }^{3)}$ | $1 \mathrm{~m} / \mathrm{s}$ |  |
| Teach-in mode | 2-point teach-in static/dynamic + proximity to mark |  |
| Output function | Light/dark switching |  |
| IO-Link functions | Standard functions | - |

${ }^{1)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.
${ }^{2)}$ In relation to long side of housing.
${ }^{3}$ ) At a mark size of 4 mm .

## Mechanics/electronics

|  | KTM Prime | KTM Prime Inox |
| :---: | :---: | :---: |
| Supply voltage ${ }^{1)}$ | 12 V DC ... 24 V DC |  |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |  |
| Power consumption ${ }^{3)}$ | $<50 \mathrm{~mA}$ |  |
| Switching frequency ${ }^{4)}$ | 15 kHz |  |
| Response time ${ }^{5}$ | $35 \mu \mathrm{~s}$ |  |
| Jitter | $15 \mu \mathrm{~s}$ |  |
| Switching output | PNP / NPN; PNP: HIGH = $\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} /$ LOW approx. O V NPN: HIGH = approx. $\mathrm{V}_{\mathrm{s}} /$ LOW $\leq 2 \mathrm{~V}$, |  |
| Output current $I_{\text {max. }}{ }^{6}$ ) | 50 mA |  |
| Input, teach-in (ET) | PNP: Teach: U = 10,8 V ... < U $\mathrm{U}_{\mathrm{V}}$; Run: U < 2 V or open NPN: Teach: U<2V; Run: $U_{V}-2 \mathrm{~V}$ or open |  |
| Retention time (ET) | 28 ms , non-volatile memory |  |
| Connection type | Connector M8, 4-pin / Cable with connector M12, 4-pin (depending on type) | Cable with connector M12, 4-pin |
| Protection class | III |  |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |  |
| Fieldbus interface | IO-Link (depending on type) |  |
| Enclosure rating | IP 67 | IP 67, IP 69K |
| Weight |  |  |
| Connector M8, 4-pin | 10 g | - |
| Cable with connector M12, 4-pin | 25 g | 60 g |
| Housing material | Plastic, ABS | Stainless steel 316L |

[^2]
## Ambient data

|  | KTM Prime | KTM Prime Inox |
| :---: | :---: | :---: |
| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |  |
| UL File No. <br> Connector M8, 4-pin <br> Cable with connector M12, 4-pin | NRKH.E348498 \& NRKH7.E348498 NRKH.E348498 | - |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/KTM_Prime

## KTM Prime

| Type of light | Light spot size | Output type | Connection type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| White | Ø 2 mm | PNP | Connector M8, 4-pin | Cd-092 | KTM-MP31181P | 1065756 |
|  |  |  | Cable with connector M12, 4-pin | Cd-092 | KTM-MP31182P | 1070490 |
|  |  | NPN | Connector M8, 4-pin | Cd-092 | KTM-MN31181P | 1071947 |
|  |  | PNP, IO-Link | Connector M8, 4-pin | Cd-321 | KTM-MP317A1P | 1071482 |
|  | $1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ | PNP | Connector M8, 4-pin | Cd-092 | KTM-MP11181P | 1072473 |
| RGB | $1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ | PNP | Connector M8, 4-pin | Cd-092 | KTM-WP11181P | 1062199 |
|  |  |  | Cable with connector M12, 4-pin | Cd-092 | KTM-WP11182P | 1062201 |
|  |  |  | Cable with connector M12, 4-pin | Cd-092 | KTM-WP11282P ${ }^{\text {1) }}$ | 1072002 |
|  |  | NPN | Connector M8, 4-pin | Cd-092 | KTM-WN11181P | 1062200 |
|  |  |  | Cable with connector M12, 4-pin | Cd-092 | KTM-WN11182P | 1062150 |
|  |  | PNP, IO-Link | Connector M8, 4-pin | Cd-321 | KTM-WP117A1P | 1061770 |
|  |  | NPN, IO-Link | Connector M8, 4-pin | Cd-321 | KTM-WN117A1P | 1061787 |

${ }^{1)}$ Time delay: 32 ms .

KTM Prime Inox

| Type of light | Light spot size | Output type | Connection type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RGB | $1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ | PNP | Cable with connector M12, 4-pin | Cd-092 | KTM-WP1A182V | 1052956 |
|  |  | NPN | Cable with connector M12, 4-pin | Cd-092 | KTM-WN1A182V | 1062148 |
|  |  | PNP, IO-Link | Cable with connector M12, 4-pin | Cd-321 | KTM-WP1A7A2V | 1062147 |

Dimensional drawings (Dimensions in mm (inch))

KTM Prime

(1) Optical axis receiver
(2) Optical axis sender
(3) Fixing hole M3
(4) Cable with male connector M12 (only KTM-xxxxx2x)

KTM Prime Inox
(1) Fixing hole M3
(2) Optical axis receiver
(3) Optical axis sender

KTM Prime Inox


B

(1) Status indicator LED, yellow: Status switching output Q (2) Status indicator LED green: supply voltage on
(3) Teach-in button

## Connection diagram

Cd-092
Cd-321

(1) Status indicator LED, yellow: Status switching output Q (dark switching)
(2) Status indicator LED green: supply voltage on
(3) Teach-in button

## Adjustments

KTM Prime


Sensing distance


Setting the switching threshold

## Teach-in static

## 1. Position mark



Press and hold teach-in button > $1<3 \mathrm{~s}$. Yellow LED flashes slowly.
2. Position background


Press and hold teach-in button $<3$ s.
Yellow LED goes out.

## Teach-in dynamic

## 1. Position background



Press the teach-in button and keep it pressed. LED flashing slowly.

## 2. Move at least the mark and background using the light spot.



Keep the teach-in button $>3<30$ s pressed.


Yellow LED will illuminate, when emitted light is on the mark.


## Switching characteristics

The optimum emitted light is selected automatically (at RGB variants).
Static teach-in: light/dark setting is defined using teach-in sequence.
Dynamic teach-in: switching output active on mark, if background is longer in the field of view during the teach-in. The switching threshold is set in the center between the background and the mark.

If the button is pressed again within 10 s of the teach (> $20 \mathrm{~ms}<10 \mathrm{~s}$ ), the relative switching threshold is placed $75 \%$ between mark ( $100 \%$ ) and background ( $0 \%$ ) (dotted line in Figure). Teach-in can also be performed using an external control signal (only dynamic teach-in).

Keylock activation and deactivation: hold down teach-in button > 30 s .
Teach-in failure: yellow LED indicator and the transmitted light of the sensor flashing quickly. For dynamic teach-in with ET signal ( 5 Hz ) via switching output Q.

## Recommended accessories

## Modules and gateways

Connection modules

| Figure | Description | Type | Part no. |
| :---: | :---: | :---: | :---: |
|  | IO-Link version V1.1, Port class 2, PIN 2, 4, 5 galvanically connected, Supply voltage 18 V DC ... 32 V DC (limit values, operation in short-circuit protected network max. 8 A) | SICK Memory Stick | 1064290 |
|  | IO-Link V1.1 Class A port, USB2.0 port, optional external power supply 24V / 1A | SiLink2 Master | 1061790 |

## Mounting brackets and mounting plates

## Mounting brackets

| Figure | Material | Description | Part no. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Stainless steel | Mounting bracket for wall mounting | Type | BEF-W100-A |
|  | Steel, zinc coated | Mounting bracket for floor mounting | 5311520 |  |
|  |  |  | BEF-W100-B |  |

## Mounting plates

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Stainless steel | Adapter plate KT3 to KTM | BEF-AP-KTMS01 |  |
| 2 |  |  |  |  |

Plug connectors and cables
Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 4-pin, straight, unshielded | Cable, open conductor <br> heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  | Female connector, M12, <br> 4-pin, angled, unshielded | Cable, open conductor <br> heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |

M8, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-G02M | 6009870 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-G05M | 6009872 |
|  | Female connector, M8, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-W02M | 6009871 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-W05M | 6009873 |

[^3]
## LONG SENSING DISTANCE - PRECISE DETECTION



## Product description

The KT3L Laser contrast sensor is ideally suited for detecting small contrast marks ( $1 \times 1 \mathrm{~mm}^{2}$ ). The small, precise laser spot can detect objects at any distance, making the KT3L suitable for a wide range of contrast detection applications that require long sensing distances. The sensor, which is ideal for distances from 20 mm to 60 mm ,

## At a glance

- Very small housing
- Precise, small laser spot
- Sensing distance up to 60 mm
- Simple 2-point teach-in


## Your benefits

- Compact design fits in applications with limited space
- Small, precise light spot detects the smallest contrast marks, e.g., 1 x $1 \mathrm{~mm}^{2}$, using Class II laser technology
- Long sensing distances up to 60 mm enable flexible installation
functions reliably even if the distance between the sensor and the object fluctuates during operation. The compact housing allows it to be installed in the tightest spaces. Plus, simple 2-point teach-in where the operator teaches the mark and the background enables quick setup.
- Switching frequency of $1,5 \mathrm{kHz}$
- Reliable operation for jittering materials
- The sensor's long depth-of-field ensures that it can be used at various sensing distances
- Automatic adaptation for high-gloss objects ensures high throughput
- Reliable operation for jittering materials


## Detailed technical data

## Features

| Dimensions (W x H x D) | $12 \mathrm{~mm} \times 40 \mathrm{~mm} \times 22 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance | 40 mm |
| Housing design (light emission) | Rectangular |
| Sensing distance tolerance | $\pm 20 \mathrm{~mm}$ |
| Light source ${ }^{1)}$ | Laser |
| Type of light | Visible red light |
| Wave length | 655 nm |
| Light spot size | 1 mm x 2 mm |
| Light spot direction ${ }^{2)}$ | Vertical |
| Laser class | II |
| Operating distance | $20 \mathrm{~mm} \ldots 60 \mathrm{~mm}$ |
| Teach-in mode | Static 2-point teach-in |

${ }^{1)}$ Average service life $50,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
${ }^{2)}$ In relation to long side of housing.

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3}$ | $<35 \mathrm{~mA}$ |
| Switching frequency ${ }^{4}$ | 1.5 kHz |
| Response time ${ }^{5}$ | $400 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{S}^{-}} \leq 2 \mathrm{~V} /$ LOW approx. $0 \mathrm{~V} / \mathrm{NPN}$ : HIGH $=$ approx. $\mathrm{V}_{\mathrm{S}} / \mathrm{LOW} \leq 2 \mathrm{~V}$, |
| Output type | PNP / NPN (depending on type) |
| Output current $\mathrm{I}_{\text {max }}$ | 100 mA |
| Input, teach-in (ET) | PNP: Teach $U>8$ V; Run: $U<2 \mathrm{~V}$ <br> NPN: Teach: $U<2 \mathrm{~V}$; Run: $\mathrm{U}=\mathrm{U}_{\mathrm{v}}$ |
| Retention time (ET) | 25 ms , non-volatile memory |
| Connection type | Connector M12, 4-pin |
| Protection class ${ }^{6)}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 67 |
| Weight | 11 g |
| Housing material | Plastic, ABS |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
${ }^{4)}$ With light/dark ratio 1:1.
${ }^{5)}$ Signal transit time with resistive load.
${ }^{6}$ ) Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493, CDRH-conform |

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/KT3

## KT3L Laser

| Light spot size | Light spot direction ${ }^{1)}$ | Adjustment | Output type | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{~mm} \times 2 \mathrm{~mm}$ | Vertical | Static 2-point teach-in | PNP | KT3L-P3216 | 1026244 |
|  |  |  | NPN | KT3L-N3216 | 1026245 |

Dimensional drawings


Adjustments

(1) LED signal strength indicator
(2) Teach-in button

Connection diagram
Cd-092

-     - $-\sqrt{2}+(L+)$
wht 2 Teach
blu! $3-(\mathrm{M})$
$\rightarrow$ blki $_{i} \frac{4}{} Q$

Sensing distance
KT3L Laser


## Setting the switching threshold

## Teach-in static

## 1. Position mark



Press and hold teach-in button > 1 s .
Yellow LED flashes slowly.

## 2. Position background



Press and hold teach-in button > 1 s . Yellow LED goes out.



Output Q $\boldsymbol{\sim}$ $\qquad$几 $\qquad$

## Switching characteristics

The optimum emitted light is selected automatically.
Light/dark setting is defined using teach-in sequence.
The switching threshold is set in the center between the background and the mark.
Teach-in can also be performed using an external control signal.

## Recommended accessories

## Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Plate L for universal clamp bracket | BEF-KHS-L01 | 2023057 |
|  |  | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} x$ 150 mm , steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Mounting brackets and mounting plates

Mounting brackets

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :--- | :--- | :--- |
|  | Steel, zinc coated | Mounting bracket | BEF-WN-W9-2 |  |
|  |  |  |  |  |

Plug connectors and cables
Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |

[^4]
## CONTRAST SENSOR IN STANDARD METAL HOUSING

Additional information
Ordering information . . . . . . . . . . .B-46
Adjustments . . . . . . . . . . . . . . . . . .B-50
Connection diagram ..... B-51
Sensing distance ..... B-51
Setting the switching threshold ..... B-52
Recommended accessories ..... B-56

## Product description

KT5-2 contrast sensors are ideal for high-precision contrast detection, such as detecting marks on high-gloss materials. Thanks to the 3-color LED, the sensors are able to activate the bestpossible emitted light source for each contrast. The device also offers various possibilities for adapting the switching point to the application via teach-in process or potentiometer. The sensor defines all necessary parameters automatically. The sensor then determines

## At a glance

- Best contrast resolution thanks to RGB LED technology
- Intuitive 10-segment bar display indicates the detection reliability
- Dynamic or static teach-in method or manual potentiometer


## Your benefits

- Able to process all packaging materials (yellow mark/white background), resulting in high machine throughput
- Reliable operation, even with jittering and high gloss materials
- High positioning accuracy improves packaging quality
the ideal switching threshold from the two gray values detected. High-precision contrast detection, automatic gloss adaptation for highly reflective objects, a sensing distance of $10 \mathrm{~mm}, 20 \mathrm{~mm}$ and 40 mm , switching frequency of 10 kHz and individual alignment and mounting options make the device suitable for a wide range of tasks. Simple mounting is also ensured - the M12 plug connection can be rotated $90^{\circ}$.
- Switching frequency of 10 kHz
- Automatic gloss adjustment for highly reflective materials
- Various sensing distances and light spot directions
- M12 plug can be rotated $90^{\circ}$
- Simple teach-in and highly visible light spot ensure easy setup
- A range of sensing distances, light spot directions and $90^{\circ}$ rotatable plug enables optimal integration
- Interchangeable lenses for maximum mounting flexibility
> $\rightarrow$ www.sick.com/de/en/KT5

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

## Detailed technical data

## Features

|  | KT5-2 Potentiometer | KT5-2 Teach-in | KT5-2 Display |
| :--- | :--- | :--- | :--- | :--- |
| Dimensions (W x H x D) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ <br> Sensing distance ${ }^{1)}$ | $10 \mathrm{~mm} / 20 \mathrm{~mm} / 40 \mathrm{~mm} /$ <br> 50 mm <br> (depending on type) | $10 \mathrm{~mm} / 20 \mathrm{~mm} / 40 \mathrm{~mm}$ (depending on type) |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{U}=+25^{\circ} \mathrm{C}$.

## Mechanics/electronics

|  | KT5-2 Potentiometer | KT5-2 Teach-in | KT5-2 Display |
| :---: | :---: | :---: | :---: |
| Supply voltage ${ }^{\text {1) }}$ | 10 V DC ... 30 V DC |  |  |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |  |  |
| Power consumption ${ }^{3)}$ | $<80 \mathrm{~mA}$ |  | < 130 mA |
| Switching frequency ${ }^{4}$ | 10 kHz |  |  |
| Response time ${ }^{5}$ | $50 \mu \mathrm{~s}$ |  |  |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{S}}-\leq 2 \mathrm{~V} /$ LOW approx. O VNPN: HIGH $=$ approx. $\mathrm{V}_{\mathrm{S}} /$ LOW $\leq 2 \mathrm{~V}$, |  |  |
| Output type | PNP / NPN |  |  |
| Analog output $\mathrm{Q}_{\mathrm{A}}$ | $100 \mathrm{~mA} \text { 6) }$ |  |  |
| Output current $\mathrm{I}_{\text {max. }}$ | $100 \mathrm{~mA}^{6)}$ |  |  |
| Input, teach-in (ET) | - | PNP <br> Teach: $\mathrm{U}=10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ <br> Run: U<2 V <br> NPN <br> Teach: $\mathrm{U}<2 \mathrm{~V}$ <br> Run: $U=10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ |  |
| Input, light/dark (L/D) | - | PNP <br> Light: U = $0 V$ <br> Dark: $\mathrm{U}>10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ <br> NPN: light: $U=U_{V}$ <br> Dark: $\mathrm{U}=0 \mathrm{~V}$ <br> (depending on type) | - |
| Retention time (ET) | - | 25 ms , non-volatile mem |  |
| Time delay | 20 ms |  |  |
| Connection type | Connector M12, 4-pin | Connector M12, 5-pin | Connector M12, 5-pin |
| Protection class | (17) | II ${ }^{7)}$ / III (KT5RG) | (11) ${ }^{7}$ |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |  |  |


|  | KT5-2 Potentiometer | KT5-2 Teach-in | KT5-2 Display |
| :--- | :--- | :--- | :--- |
| Enclosure rating | IP 67 |  |  |
| Weight | 400 g | - |  |
| Housing material | Metal, zinc diecast |  |  |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4}$ ) With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6}$ ) Short-circuit protected.
${ }^{7)}$ Reference voltage DC 50 V .

## Ambient data

|  | KT5-2 Potentiometer | KT5-2 Teach-in |  |
| :--- | :--- | :--- | :--- |
| Ambient operating temperature | $-10{ }^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |  |  |
| Ambient storage temperature | $-25{ }^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$ |  |  |
| Shock load | According to IEC 60068 |  |  |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |  |  |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/KT5

## KT5-2 Potentiometer, white

- Wave length: 450 ... 650 nm
- Adjustment: Manual adjustment, potentiometer
- Connection: Male connector M12, 4-pin

| Sensing dis- <br> tance ${ }^{1)}$ | Light spot size | Light spot <br> direction ${ }^{2)}$ | Output type | Analog output | Connection <br> diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 mm | 1.2 mm x <br> 4.2 mm | Vertical | PNP | $0.3 \mathrm{~mA} \ldots 10 \mathrm{~mA}$ | Cd-327 | KT5M-2P1151 | 1044400 |
|  |  | NPN | - | Cd-327 | KT5M-2N1111 | 1048489 |  |

[^5]KT5-2 Potentiometer, green

- Wave length: 520 nm
- Adjustment: Manual adjustment, potentiometer
- Connection: Male connector M12, 4-pin

| Sensing distance ${ }^{1)}$ | Light spot size | Light spot direction ${ }^{2)}$ | Output type | Time delay | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 mm | $\begin{gathered} 1.2 \mathrm{~mm} x \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-327 | KT5G-2P1111 | 1015993 |
|  |  |  |  | 20 ms | Cd-327 | KT5G-2P1121 | 1015997 |
|  |  |  | NPN | - | Cd-327 | KT5G-2N1111 | 1015981 |
|  |  |  |  | 20 ms | Cd-327 | KT5G-2N1121 | 1015983 |
|  |  | Horizontal | PNP | - | Cd-327 | KT5G-2P2111 | 1016008 |
|  |  |  |  | 20 ms | Cd-327 | KT5G-2P2121 | 1016009 |
|  |  |  | NPN | - | Cd-327 | KT5G-2N2111 | 1015990 |
| 20 mm | $\begin{gathered} 1.5 \mathrm{~mm} \mathrm{x} \\ 5.5 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-327 | KT5G-2P1211 | 1015999 |
|  |  |  |  | 20 ms | Cd-327 | KT5G-2P1221 | 1016001 |
|  |  |  | NPN | - | Cd-327 | KT5G-2N1211 | 1015985 |
|  |  | Horizontal | PNP | - | Cd-327 | KT5G-2P2211 | 1016010 |
|  |  |  |  | 20 ms | Cd-327 | KT5G-2P2221 | 1016011 |
|  |  |  | NPN | - | Cd-327 | KT5G-2N2211 | 1015991 |
| 40 mm | $\begin{gathered} 1.1 \mathrm{~mm} \mathrm{x} \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-327 | KT5G-2P1311 | 1016003 |
|  |  |  |  | 20 ms | Cd-327 | KT5G-2P1321 | 1016005 |
|  |  |  | NPN | - | Cd-327 | KT5G-2N1311 | 1015988 |
|  |  | Horizontal | PNP | - | Cd-327 | KT5G-2P2311 | 1016012 |
|  |  |  |  | 20 ms | Cd-327 | KT5G-2P2321 | 1016013 |
|  |  |  | NPN | - | Cd-327 | KT5G-2N2311 | 1015992 |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ In relation to long side of housing.

KT5-2 Potentiometer, green, analog output

- Wave length: 520 nm
- Adjustment: Manual adjustment, potentiometer
- Analog output: $0.3 \mathrm{~mA} . . .10 \mathrm{~mA}$
- Connection: Male connector M12, 4-pin

| Sensing distance ${ }^{1)}$ | Light spot size | Light spot direction ${ }^{2)}$ | Output type | Connection diagram | Type | Part $n 0$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 mm | $1.2 \mathrm{~mm} \times 4.2 \mathrm{~mm}$ | Vertical | PNP | Cd-327 | KT5G-2P1151 | 1016195 |
|  |  |  | NPN | Cd-327 | KT5G-2N1151 | 1016385 |
|  |  | Horizontal | PNP | Cd-327 | KT5G-2P2151 | 1017809 |
| 20 mm | $1.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$ | Vertical | PNP | Cd-327 | KT5G-2P1251 | 1016196 |
|  |  |  | NPN | Cd-327 | KT5G-2N1251 | 1022582 |
| 40 mm | 1.1 mm x 4.2 mm | Vertical | PNP | Cd-327 | KT5G-2P1351 | 1016197 |
|  |  |  | NPN | Cd-327 | KT5G-2N1351 | 1016728 |
|  |  | Horizontal | PNP | Cd-327 | KT5G-2P2351 | 1018067 |
|  |  |  | NPN | Cd-327 | KT5G-2N2351 | 1018068 |

[^6]
## KT5-2 Teach-in, red / green

- Wave length: $640 \mathrm{~nm}, 525 \mathrm{~nm}$
- Connection: Male connector M12, 5-pin

| Adjustment | Sensing distance ${ }^{1)}$ | Light spot size | Light spot direction ${ }^{2)}$ | Output type | Time delay | Connection diagram | Type | Part $n 0$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Static 2-point teach-in | 10 mm | $\begin{gathered} 1.2 \mathrm{~mm} \mathrm{x} \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-066 | KT5RG-2P1116 | 1027393 |
|  |  |  |  |  | 20 ms | Cd-066 | KT5RG-2P1126 | 1027396 |
|  |  |  |  | NPN | - | Cd-066 | KT5RG-2N1116 | 1027394 |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ In relation to long side of housing.

## KT5-2 Teach-in, RGB

- Wave length: $640 \mathrm{~nm}, 525 \mathrm{~nm}, 470 \mathrm{~nm}$
- Connection: Male connector M12, 5-pin

| Adjustment | Sensing distance ${ }^{1)}$ | $\begin{aligned} & \text { Light spot } \\ & \text { size } \end{aligned}$ | Light spot direction ${ }^{2)}$ | Output type | Time delay | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dynamic teach-in | 10 mm | $\begin{gathered} 1.2 \mathrm{~mm} \mathrm{x} \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-324 | KT5W-2P1113 | 1016629 |
|  |  |  |  |  | 20 ms | Cd-324 | KT5W-2P1123 | 1017810 |
|  |  |  |  | NPN | - | Cd-324 | KT5W-2N1113 | 1016630 |
|  |  |  | Horizontal | PNP | - | Cd-324 | KT5W-2P2113 | 1018043 |
|  |  |  |  | NPN | - | Cd-324 | KT5W-2N2113 | 1018042 |
|  | 20 mm | $\begin{gathered} 1.5 \mathrm{~mm} x \\ 5.5 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-324 | KT5W-2P1213 | 1016715 |
|  |  |  |  | NPN | - | Cd-324 | KT5W-2N1213 | 1016716 |
|  | 40 mm | $\begin{gathered} 1.1 \mathrm{~mm} \mathrm{x} \\ 4.2 \mathrm{~mm} \end{gathered}$ | Horizontal | PNP | 20 ms | Cd-324 | KT5W-2P2323 | 1022165 |
| Static 2-point teach-in | 10 mm | $\begin{gathered} 1.2 \mathrm{~mm} \mathrm{x} \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-323 | KT5W-2P1116 | 1018044 |
|  |  |  |  |  | 20 ms | Cd-323 | KT5W-2P1126 | 1018587 |
|  |  |  |  | NPN | - | Cd-323 | KT5W-2N1116 | 1018045 |
|  |  | $\begin{gathered} 1.5 \mathrm{~mm} x \\ 5.5 \mathrm{~mm} \end{gathered}$ | Horizontal | PNP | - | Cd-323 | KT5W-2P2116 | 1022312 |
|  | 20 mm | $\begin{gathered} 1.5 \mathrm{~mm} \mathrm{x} \\ 5.5 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-323 | KT5W-2P1216 | 1018586 |
|  |  |  |  | NPN | - | Cd-323 | KT5W-2N1216 | 1019022 |
|  |  | $\begin{gathered} 1.2 \mathrm{~mm} \mathrm{x} \\ 4.2 \mathrm{~mm} \end{gathered}$ | Horizontal | PNP | - | Cd-323 | KT5W-2P2216 | 1019020 |
|  | 40 mm | $\begin{gathered} 1.1 \mathrm{~mm} x \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-323 | KT5W-2P1316 | 1018961 |
|  |  |  |  | NPN | - | Cd-323 | KT5W-2N1316 | 1022678 |

[^7]KT5-2 Display

- Wave length: $470 \mathrm{~nm}, 525 \mathrm{~nm}, 640 \mathrm{~nm}$
- Connection: Male connector M12, 5-pin

| Adjustment | Sensing distance ${ }^{1)}$ | Light spot size | Light spot direction ${ }^{2)}$ | Output type | Time delay | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Static 2-point teach-in with manual fine adjustment | 10 mm | $\begin{gathered} 1.2 \mathrm{~mm} \text { x } \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-323 | KT5W-2P1116D | 1026538 |
|  |  |  |  |  | 20 ms | Cd-323 | KT5W-2P1126D | 1026579 |
|  |  |  |  | NPN | - | Cd-323 | KT5W-2N1116D | 1026540 |
|  |  |  |  |  | 20 ms | Cd-323 | KT5W-2N1126D | 1026582 |
|  |  |  | Horizontal | PNP | - | Cd-323 | KT5W-2P2116D | 1026584 |
|  |  |  |  | NPN | - | Cd-323 | KT5W-2N2116D | 1026583 |
|  | 20 mm | $\begin{gathered} 1.5 \mathrm{~mm} \mathrm{x} \\ 5.5 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-323 | KT5W-2P1216D | 1026577 |
|  |  |  |  | NPN | - | Cd-323 | KT5W-2N1216D | 1026580 |
|  | 40 mm | $\begin{gathered} 1.1 \mathrm{~mm} \mathrm{x} \\ 4.2 \mathrm{~mm} \end{gathered}$ | Vertical | PNP | - | Cd-323 | KT5W-2P1316D | 1026578 |
|  |  |  |  | NPN | - | Cd-323 | KT5W-2N1316D | 1026581 |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ In relation to long side of housing.

Dimensional drawings (Dimensions in mm (inch)) KT5-2 Potentiometer

(1) Lens (light transmission), can be exchanged for pos. 4
(2) M5 threaded mounting hole, 5.5 mm deep
(3) See dimensional drawing for lens
(4) Blind screw can be replaced by pos. 1
(5) Connector M12 (rotatable up to $90^{\circ}$ )

B
KT5-2 Teach-in, KT5-2 Display


## Adjustments

KT5-2 Potentiometer

(1) Function signal indicator (yellow)
(2) Pre-selection switch (light/dark switching)
(3) Switching threshold adjustment
(4) Adjustment indicators (green)

KT5-2 Teach-in, KT5RG-xxx6
KT5-2 Teach-in, KT5W-xxx3

(1) Function signal indicator (yellow)
(2) Pre-selection switch
(3) Teach-in button
(2) Pre-selection switch
(3) Teach-in button
(1) Function signal indicator (yellow)
(2) Teach-in button
(1) Function signal indicator (yellow)
(2) Teach-in button


KT5-2 Teach-in, KT5G-xxx6, KT5W-xxx6

(1) Function signal indicator (yellow)
(2) Pre-selection switch
(3) Teach-in button

KT5-2 Display

(1) Function signal indicator (yellow)
(2) Pre-selection switch
(3) Teach-in button
(4) Bar graph (green)

Connection diagram

Cd-066


Cd-323


Sensing distance
KT5-2 Teach-in, KT5G, KT5W, KT5-2 Display

(1) Sensing distance 10 mm
(2) Sensing distance 20 mm (3) Sensing distance 40 mm

Cd-324


Cd-327


KT5-2 Teach-in, KT5RG-xxx6


## Setting the switching threshold

## KT5-2 Potentiometer

## 1. Select switching function (light/dark)

B


Turn the rotary switch to the desired position.
$0=$ light switching

- = dark switching

2. Position mark


Turn potentiometer in the direction shown (green LED illuminates) until the yellow LED status changes and the green LED opposite illuminates.
3. Position background


Gradually turn back the potentiometer (count the number of turns) until the yellow LED changes status again and illuminates.


Turn the potentiometer forward again by half the number of turns to ensure that the switching threshold is optimally set.


## Switching characteristics

The switching threshold is set in the center between the background and the mark.

## KT5-2 Teach-in, teach-in static

## 1. Position mark



Turn rotary switch to "Teach" position. Press and hold teach-in button > 1 s . Red emitted light and yellow LED flash.
2. Position background


Press and hold teach-in button
$>1 \mathrm{~s}$.
Yellow LED goes out.


## Switching characteristics

The optimum emitted light is selected automatically.
Light/dark setting is defined using teach-in sequence.
The switching threshold is set in the center between the background and the mark.
Teach-in can also be performed using an external control signal.

## KT5-2 Teach-in, teach-in dynamic

## 1. Select switching function (light/dark)



Turn rotary switch to desired teach position:
D = dark switching
$\mathrm{L}=$ light switching

## 2. Position mark or background



Press the teach-in button and keep it pressed.

## 3. Move at least one repeat length using the light spot



Keep the teach-in button pressed.


Release the teach-in button. Yellow LED will illuminate, when emitted light is on the mark.

Example


## Switching characteristics

The optimum emitted light is selected automatically.
The switching threshold is set in the center between the lowest and the second-lowest reflectivity.
Teach-in can also be performed using an external control signal.
Light/dark setting can also be configured using an external control signal.
Observe the minimum speed ( $25 \mathrm{~mm} / \mathrm{s} . . .300 \mathrm{~mm} / \mathrm{s}$ ).

KT5-2 Display, Teach-in static

## 1. Position mark



Turn rotary switch to "Teach" position. Press and hold teach-in button > 1 s . Red emitted light and yellow LED flash.

## 2. Position background



Press and hold teach-in button $>1 \mathrm{~s}$.
Yellow LED goes out.
Optimum emitted light is selected.


Fine adjustment possible using the "+"/"-" buttons.

## Note

The bar display visualizes the detection reliability during teach-in. The more LEDs that illuminate, the better the teach-in: 1 LED illuminates = operation not reliable - contrast difference too low
$\leq 4$ LEDs illuminate $=$ operation OK - sufficient contrast difference
> 4 LEDs illuminate $=$ reliable operation - high contrast difference


## Switching characteristics

The optimum emitted light is selected automatically.
Light/dark setting is defined using teach-in sequence.
The switching threshold is set in the center between the background and the mark.
Teach-in can also be performed using an external control signal.

## Recommended accessories

## Lens and accessories

| Description | Diameter | Type |
| :--- | :--- | :--- | :--- |
| Lens, 40 mm sensing distance | 26 mm | Part no. |
| Lens, 10 mm sensing distance | 25.6 mm | OBJ-210 |
| Lens, 20 mm sensing distance | 25.6 mm | OBJ-211 |

Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Plate G for universal clamp bracket | BEF-KHS-G01 | 2022464 |
|  |  | Plate K for universal clamp bracket | BEF-KHS-K01 | 2022718 |
|  |  | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} \times 150 \mathrm{~mm}$, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Plug connectors and cables

Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, | Cable, open <br> conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M |

M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 5-pin, straight, unshielded | Cable, open <br> conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  | Female connector, M12, <br> 5-pin, angled, unshielded | Cable, open <br> conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |

[^8]
## CONTRAST SENSORS WITH FIBER-OPTIC CABLES



## Product description

When steam, heat or dust are present, the KTL5-2 family of contrast sensors with fiber-optic cables offers the ideal solution. Various straight or angled fiber-optics can be easily mounted on the sensor. Due to the 3-color RGB LED technology, the sensors are able to activate the best possible emitted light source for each contrast. In addition, the sensors feature application-specific teach-in processes. The sensor defines all necessary parameters automatically

## At a glance

- Various heat-resistant fiber-optic cable models are available
- Various teach-in methods, including potentiometer


## Your benefits

- Reliable contrast detection
- Flexible integration into machines due to minimal space requirements and various fiber-optic cable versions
- Durable, glass fiber-optic cables
- either via the teach-in button on the device or via an external control cable. The sensor then determines the ideal switching threshold from the two gray values detected. High-precision contrast detection, automatic adaptation for high-gloss objects, a 10 kHz switching frequency, analog output, and individual alignment and mounting options make the device suitable for a wide range of tasks.
- Analog output
- Switching frequency of 10 kHz
- Reliable operation in adverse environmental conditions, such as extreme temperatures and moisture
- Resistant to aggressive cleaning agents
- Compact design fits in applications with limited space

[^9]

## Detailed technical data

## Features

| Dimensions (W x H x D) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance | Dependent on the fiber-optic cable |
| Housing design (light emission) | Rectangular |
| Light source ${ }^{\text {1) }}$ | LED |
| Type of light | Green, RGB (depending on type) |
| Output function | Light/dark switching |
| ${ }^{1)}$ Average service life: $100,000{\text { h at } \mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C} .}$ |  |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | $<80 \mathrm{~mA}$ |
| Switching frequency ${ }^{4}$ | 10 kHz |
| Response time ${ }^{5}$ | $50 \mu \mathrm{~s}$ |
| Switching output | PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} / \mathrm{LOW}$ approx. $0 \mathrm{~V} / \mathrm{NPN}$ : HIGH $=$ approx. $\mathrm{V}_{\mathrm{s}} / \mathrm{LOW} \leq 2 \mathrm{~V}$, |
| Output type | PNP / NPN (depending on type) |
| Analog output $\mathrm{Q}_{\mathrm{A}}$ | 0.3 mA ... 10 mA |
| Output current $\mathrm{I}_{\text {max }}$. | 100 mA |
| Input, teach-in (ET) | PNP: Teach: $\mathrm{U}=10 \mathrm{~V} . .<\mathrm{U}_{\mathrm{v}}$; Run: $\mathrm{U}<2 \mathrm{~V}$ <br> NPN: Teach: U < 2 V ; Run: $\mathrm{U}=10 \mathrm{~V} . .<\mathrm{U}_{\mathrm{V}}$ |
| Input, fine/coarse (F/C) | PNP: fine: $U=0 \mathrm{~V}$; Coarse: U > $10 \mathrm{~V} \ldots$... UV |
| Input, light/dark (L/D) | PNP / light: $U=0 \mathrm{~V}$; dark: $\mathrm{U}>10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{v}}$ <br> NPN: light: $U=U_{\mathrm{V}}$; dark: $\mathrm{U}=0 \mathrm{~V}$ (depending on type) |
| Retention time (ET) | 25 ms , non-volatile memory |
| Time delay | 20 ms |
| Connection type | Connector M12, 4-pin / Connector M12, 5-pin (depending on type) |
| Protection class ${ }^{6)}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, zinc diecast |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
4) With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6}$ Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/KT5

## KTL5-2 Fiber Optic

- Sensing distance: Dependent on the fiber-optic cable
- Light spot size: Dependent on the fiber-optic cable

| Type of light | Wave length | Adjustment | Output type | Time delay | Analog output | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Green | 520 nm | Manual adjustment, potentiometer | PNP | - | - | Cd-327 | KTL5G-2P11 | 1016294 |
|  |  |  |  |  | $\begin{gathered} 0.3 \mathrm{~mA} . . . \\ 10 \mathrm{~mA} \end{gathered}$ | Cd-327 | KTL5G-2P51 | 1016950 |
|  |  |  | NPN | - | - | Cd-327 | KTL5G-2N11 | 1016295 |
|  |  |  |  |  | $\begin{gathered} 0.3 \mathrm{~mA} \ldots \\ 10 \mathrm{~mA} \end{gathered}$ | Cd-327 | KTL5G-2N51 | 1016951 |
|  |  | Without, automatic contrast detection | NPN | - | - | Cd-325 | KTL5G-2P14 | 1022091 |
|  |  |  |  | 20 ms | - | Cd-325 | KTL5G-2P24 | 1019162 |
| RGB | 640 nm, 525 nm , 470 nm | Dynamic teach-in | PNP | - | - | Cd-324 | KTL5W-2P13 | 1027562 |
|  |  |  |  | 20 ms | - | Cd-324 | KTL5W-2P23 | 1019551 |
|  |  |  | NPN | - | - | Cd-324 | KTL5W-2N13 | 1019661 |
|  |  | Static 2-point teach-in | PNP | - | - | Cd-323 | KTL5W-2P16 | 1026006 |
|  |  |  | NPN | - | - | Cd-323 | KTL5W-2N16 | 1025995 |

Dimensional drawing (Dimensions in mm (inch))

## KTL5-2 Fiber Optic



[^10]Adjustments

KTL5-2 Fiber Optic, KTL5Gxxx1

(1) Function signal indicator (yellow)
(2) Pre-selection switch (light/dark switching)
(3) Adjustment indicators (green)
(4) Switching threshold adjustment

KTL5-2 Fiber Optic, KTL5Gxxx4

(1) Function signal indicator (yellow) (2) Fine/coarse switch

## Connection diagram



$$
\begin{aligned}
& \text { Cd-324 }
\end{aligned}
$$

## Sensing distance

## KTL5-2 Fiber Optic



KTL5-2 Fiber Optic, KTL5Wxxx3

(1) Function signal indicator (yellow)
(2) Pre-selection switch (light/dark switching)
(3) Teach-in button

Cd-325

(1) Function signal indicator (yellow) (2) Pre-selection switch (3) Teach-in button

Cd-327
-4 brn $1+(L+)$
$\rightarrow$ blki $\frac{4}{2}$
blul 3 -(M)
$\rightarrow$ wht! 2 Q $Q_{A}$ optional
A optiona

KTL5-2 Fiber Optic, KTL5Wxxx6


(1) Fiber-optic cable LBST 32900 (2) Fiber-optic cable LBSR 32900 (3) Fiber-optic cable OCSL

## Setting the switching threshold

Potentiometer

## 1. Select switching function (light/dark)

## B



Turn the rotary switch to the desired position:
$0=$ light switching

- = dark switching

2. Position mark


Turn potentiometer in the direction shown (green LED illuminates) until the yellow LED status changes and the green LED opposite illuminates.

## 3. Position background



Gradually turn back the potentiometer (count the number of turns) until the yellow LED changes status again and illuminates.


Turn the potentiometer forward again by half the number of turns to ensure that the switching threshold is optimally set.

## Switching characteristics

The optimum emitted light is selected automatically.
The switching threshold is set in the center between the background and the mark.

## Teach-in dynamic

## 1. Select switching function (light/dark)



Turn the rotary switch to the desired teach position: D = dark switching $\mathrm{L}=$ light switching

## 2. Position mark or background



Press the teach-in button and keep it pressed.
3. Move at least one repeat length using the light spot


Keep the teach-in button pressed.


Release the teach-in button. Yellow LED will illuminate, when emitted light is on the mark.


## Switching characteristics

The optimum emitted light is selected automatically.
The switching threshold is set in the center between the lowest and the second-lowest reflectivity.
Teach-in can also be performed using an external control signal.
Light/dark setting can also be configured using an external control signal.
Observe the minimum speed ( $25 \mathrm{~mm} / \mathrm{s} \ldots 300 \mathrm{~mm} / \mathrm{s}$ ).

## Teach-in static

## 1. Position mark



Turn rotary switch to "Teach" position. Press and hold teach-in button > 1 s . Red emitted light and yellow LED flash.

## 2. Position background



Press and hold teach-in button
$>1 \mathrm{~s}$.
Yellow LED goes out.

## Example (for both settings)



## Switching characteristics

The optimum emitted light is selected automatically.
Light/dark setting is defined using teach-in sequence.
The switching threshold is set in the center between the background and the mark.
Teach-in can also be performed using an external control signal.

## Recommended accessories

## Others

| Description | Core <br> material | Fiber length | Minimum <br> bend radius | Detection <br> principle | Type | Part no. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fiber optic, bifurcated, thread/angle tip, <br> 3.2 mm bundle, glass/stainless steel | Glass fiber | 5 m | 19 mm | Proximity <br> system | LBSTA325000 | 7022348 |

## Universal bar clamp systems



## Plug connectors and cables

Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 4-pin, straight, unshielded | Cable, open <br> conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  | Female connector, M12, | Cable, open <br> conductor heads | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |

M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05M | 6009869 |

[^11]
## EASY CONTRAST DETECTION



| Additional information |  |
| :---: | :---: |
| Detailed technical data | B-67 |
| Ordering information | 68 |
| Dimensional drawings | 68 |
| Adjustments | B-69 |
| Connection diagram. | B-69 |
| Sensing distance | B-69 |
| Setting the switching threshold .. B-70 |  |
| Recommended access | B-71 |

## Product description

The KT6W-2 is a high-performance, cost-competitive contrast sensor with easy setup. The 3-color RGB LED technology allows even the smallest marks and contrasts to be reliably detected. High-gloss reflective marks are also detected due to the sensor's automatic gloss adjustment feature. A tough, metal housing ensures a long service life and high quality. The teach-in process is sim-
ple and easy all key parameters, such as transmission color and light/dark switching are detected automatically by the sensor. The KT6W-2 is available with the light emission located on the side of the device or on the end of the device. In addition to sturdy fixing holes, the KT6W-2 features two additional t-slots for even more mounting flexibility.

- 10 mm sensing distance
- Light exits at end or side, based on model
- Common mounting footprint
- Tough, metal housing
- Automatic gloss adjustment for highly reflective materials


## Your benefits

- 3-color RGB LED for all registration mark applications - one sensor fits all
- Tough, metal housing for long service life
- Reliable operation, even with highgloss reflective and jittering materials
- Easy setup - detect all marks with one sensor

[^12] more


## Detailed technical data

## Features

| Dimensions (W $\times \mathbf{H} \times$ D) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance | 10 mm |
| Housing design (light emission) | Rectangular |
| Sensing distance tolerance | $\pm 3 \mathrm{~mm}$ |
| Light source ${ }^{\text {1) }}$ | LED |
| Type of light | RGB |
| Light emission | Short side of housing / Long side of housing (depending on type) |
| Light spot size | $1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ |
| Light spot direction ${ }^{2)}$ | Vertical |
| Teach-in mode | Static 2-point teach-in |
| ${ }^{\text {1) }}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$. |  |
| ²) $^{\text {I }}$ In relation to long side of housing. |  |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | $<40 \mathrm{~mA}$ |
| Switching frequency ${ }^{4}$ | 5 kHz |
| Response time | $100 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{S}}-\leq 2 \mathrm{~V} / \mathrm{LOW}$ approx. $0 \mathrm{~V} / \mathrm{NPN}: \mathrm{HIGH}=$ approx. $\mathrm{V}_{\mathrm{S}} / \mathrm{LOW} \leq 2 \mathrm{~V}$, |
| Output type | PNP / NPN |
| Output current $\mathrm{I}_{\text {max }}$ | 100 mA |
| Retention time (ET) | 25 ms , non-volatile memory |
| Connection type | Connector M12, 4-pin |
| Protection class ${ }^{5)}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, zinc diecast |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4}$ ) With light/dark ratio 1:1.
${ }^{5)}$ Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/KT6

| Light emission | Output type | Type |
| :---: | :---: | :---: | :---: |
| Short side of housing | PNP | Part no. |
| Long side of housing | NPN | KT6W-2P5116 |
| KT6W-2N5116 |  |  |
|  | PNP | 1046013 |

Dimensional drawings (Dimensions in mm (inch))

## KT6W-2x5xxx


(1) Lens (light transmission), edge side
(3) Connector M12
(4) SW8 mounting hole for M5 nut
(5) SW8 T-slot for M5 nut

KT6W-2x6xxx

(2) Lens (light transmission), length side
(3) Connector M12
(4) SW8 mounting hole for M5 nut
(5) SW8 T-slot for M5 nut

Adjustments

(1) Function signal indicator
(2) Teach-in button

Sensing distance


## Setting the switching threshold

## Teach-in static

## 1. Position mark



Press and hold teach-in button $>1 \mathrm{~s}$.
Red emitted light flashes.
2. Position background


Press and hold teach-in button > 1 s .
Yellow LED will illuminate, when emitted light is on the mark.



## Switching characteristics

The optimum emitted light is selected automatically.
Light/dark setting is defined using teach-in sequence.
The switching threshold is set in the center between the background and the mark.

## Recommended accessories

Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Plate K for universal clamp bracket | BEF-KHS-K01 | 2022718 |
|  |  | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} \times 150 \mathrm{~mm}$, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Plug connectors and cables

Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |

[^13]
## LASER CONTRAST SENSOR AND CAN COMMUNICATION



## Product description

The KT8 contrast sensor family has two versions. The first variant, KT8L, allows a highly reliable detection of the smallest contrast marks and objects thanks to the precise laser. Lasers are used in contrast sensors for either long-range detection ( 800 mm ) or detection of very small objects. The KT8L provides both. Two light spot sizes are available: $<0.3 \mathrm{~mm}$ for detecting small objects and marks and 3 mm for larger objects and marks. The second variant, KT8 CAN, is distinguished primarily by its ability to

## At a glance

- Laser version offers sensing distances of 30 mm to 800 mm
- Very small and precise laser light spot (Class II)
- Fast switching frequency of 17 kHz


## Your benefits

- Wide selection of varying distances, depending on the application
- Precise detection of the smallest marks and objects, e.g., $1 \times 1 \mathrm{~mm}^{2}$
- Reliable operation, even with unsteady objects
- Easy integration into machine designs, thanks to standard CAN protocol
- Access to the sensor via the control system saves the machine operator time and effort during configuration
communicate. The CAN interface makes adjusting the sensor and integrating additional functions into a machine easier. Any number of parameter sets can be stored in the machine controller via the CAN interface, such as for different packaging. In addition, important process data, like contamination or current switching thresholds can be queried via the CAN interface. A 3-color LED, gloss adaptation, automatic drift correction and fast response times are also included.
- Detection reliability displayed in the bar graph display
- CAN interface version for parameter setup, diagnostics and function selection
- Very precise light spot
- Individual, application-specific configuration and settings
- Automatic drift correction ensures high production reliability with faded print marks and other difficult to detect marks
- Reliable operation, even with highgloss reflective surfaces, increasing throughput



## Detailed technical data

## Features

|  | KT8 CAN | KT8L Laser |
| :---: | :---: | :---: |
| Dimensions (Wx H x D ) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |  |
| Sensing distance ${ }^{1)}$ | $10 \mathrm{~mm} / 20 \mathrm{~mm}$ (depending on type) | 150 mm |
| Housing design (light emission) | Rectangular |  |
| Light source | LED ${ }^{\text {2) }}$ | Laser ${ }^{3}$ |
| Type of light | RGB | Red |
| Wave length | $640 \mathrm{~nm}, 525 \mathrm{~nm}, 470 \mathrm{~nm}$ | 655 nm |
| Light emission | Long and short side of housing, exchangeable | Long side of housing |
| Light spot direction | Vertical ${ }^{4)}$ | Round |
| Operating distance | - | $30 \mathrm{~mm} \ldots 800 \mathrm{~mm}{ }^{\text {5) }}$ (depending on type) |
| Teach-in mode | Static 2-point teach-in, Dynamic teach-in (min/max) |  |
| Function | Automatic drift correction, Deactivation delay, $10 \mathrm{~ms} / 20 \mathrm{~ms} / 40 \mathrm{~ms}$, adjustable, CAN interface | Automatic drift correction |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{U}=+25^{\circ} \mathrm{C}$.
${ }^{3}$ ) Average service life $50,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
${ }^{4}$ ) In relation to long side of housing.
${ }^{5}$ ) With respect to black-white contrast $6 \% / 90 \%$.

## Mechanics/electronics

|  | KT8 CAN | KT8L Laser |
| :---: | :---: | :---: |
| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |  |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |  |
| Power consumption ${ }^{3)}$ | < 120 mA | $<80 \mathrm{~mA}$ |
| Switching frequency ${ }^{4}$ | 22.5 kHz | 17 kHz |
| Response time ${ }^{5}$ | $22 \mu \mathrm{~s}$ | $30 \mu \mathrm{~s}$ |
| Jitter | < $11 \mu \mathrm{~s}$ | < $15 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} /$ LOW approx. 0 V NPN: HIGH = approx. $\mathrm{V}_{\mathrm{s}} / \mathrm{LOW} \leq 2 \mathrm{~V}$, |  |
| Analog output $\mathrm{Q}_{\mathrm{A}}$ |  | $0.3 \mathrm{~mA} . . .28 .5 \mathrm{~mA}$ |
| Output current $\mathrm{I}_{\text {max }}$ | 100 mA |  |
| Input, teach-in (ET) | PNP: Teach: U=10V ... < U ; Run: U < 2 V <br> NPN: Teach: U < 2 V ; Run: $\mathrm{U}=10 \mathrm{~V} . .<\mathrm{U}_{\mathrm{V}}$ |  |
| Retention time (ET) | 25 ms , non-volatile memory |  |
| Time delay | - | 20 ms , adjustable |
| Connection type | Male connector M12, 8-pin | Connector M12, 5-pin |
| Protection class | II ${ }^{6)}$ | II ${ }^{7}$ |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |  |
| Enclosure rating | IP 67 |  |
| Weight | 400 g |  |
| Housing material | Metal, zinc diecast |  |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4)}$ With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6}$ ) Reference voltage DC 32 V .
${ }^{7)}$ Reference voltage DC 50 V .

## Ambient data

|  | KT8 CAN | KT8L Laser |
| :--- | :--- | :--- |
| Ambient operating temperature | $-10{ }^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$ |
| Ambient storage temperature | $-10^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |  |
| Shock load | According to IEC 60068 |  |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 | 242368, CDRH-conform |

## Ordering information

Other models $\rightarrow$ www.mysick.com/en/KT8

## KT8 CAN

| Sensing distance ${ }^{1)}$ | Sensing distance tolerance | Light spot size | Output type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 mm | $\pm 3 \mathrm{~mm}$ | $0.8 \mathrm{~mm} \times 4 \mathrm{~mm}$ | PNP | Cd-328 | KT8W-P111C | 1027919 |
|  |  |  | NPN | Cd-328 | KT8W-N111C | 1028223 |
| 20 mm | $\pm 3 \mathrm{~mm}$ | $1.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$ | PNP | Cd-328 | KT8W-P121C | 1043689 |

${ }^{1)}$ From front edge of lens.

## KT8L Laser

| Sensing distance ${ }^{1)}$ | Operating distance ${ }^{2)}$ | Light spot size ${ }^{\text {3) }}$ | Output type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 mm | $30 \mathrm{~mm} . . .800 \mathrm{~mm}$ | $\emptyset 0.3$ mm | PNP | Cd-329 | KT8L-P3656 | 1041262 |
|  |  |  | NPN | Cd-329 | KT8L-N3656 | 1041263 |
|  | $30 \mathrm{~mm} . . .600 \mathrm{~mm}$ | $\emptyset 3$ mm | PNP | Cd-329 | KT8L-P3756 | 1041351 |
|  |  |  | NPN | Cd-329 | KT8L-N3756 | 1041352 |

${ }^{1)}$ From front edge of lens.
${ }^{2}$ ) With respect to black-white contrast $6 \% / 90 \%$.
${ }^{3)}$ At focal point $=$ sensing distance 150 mm .

## Dimensional drawings (Dimensions in mm (inch))

KT8 CAN

(1) Lens (light transmission), can be exchanged for pos. 4
(2) M5 threaded mounting hole, 5.5 mm deep
(3) See dimensional drawing for lens
(4) Blind screw can be replaced by pos. 1
(5) Connector M12 (rotatable up to $90^{\circ}$ )

KT8L Laser


Adjustments
KT8 CAN

(1) Function signal indicators (yellow) (2) Bar graph (green)
(3) Teach-in button/"+" and "-" button

KT8L Laser

(1) Function signal indicators (yellow) (2) Bar graph (green)
(3) Teach-in button/"+" and "-" button

Connection diagram


## Sensing distance

KT8 CAN, KT10-2


KT8L Laser


## Setting the switching threshold

## KT8, Teach-in static (default setting KT8 Laser)

## 1. Position mark



Press and hold SET button > 1 s . Yellow LED flashes.

## 2. Position background



Press and hold SET button > 1 s . Yellow LED goes out.

## KT8, Teach-in dynamic (default setting KT8 CAN)

## 1. Position background

Press and hold SET button. Emitted light turns white.

2. Move at least one repeat length using the light spot


Hold down SET button.


Release SET button.

## Note

The bar display visualizes the detection reliability during teach-in. The more LEDs that illuminate, the better the teach-in: 1 LED illuminates = operation not reliable - contrast difference too low
$\leq 4$ LEDs illuminate $=$ operation OK - sufficient contrast difference
> 4 LEDs illuminate $=$ reliable operation - high contrast difference

## Example



## Switching characteristics

Light/dark setting is defined using teach-in sequence or menu, cf. operating instructions. The switching threshold is set in the center between the background and the mark.
Teach-in and the light/dark setting can also be configured using an external control signal. Configuration only possible via CAN (see operating instruction).

## Recommended accessories

## Universal bar clamp systems

| Figure | Material | Pescription | Type |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Plate G for universal clamp bracket | BEF-KHS-G01 |  |  |
|  | Plate K for universal clamp bracket | 2022464 |  |  |
|  | Steel, zinc coated | Universal clamp bracket for rod mounting | BEF-KHS-K01 |  |
|  |  | Mounting bar, straight, 200 mm, steel | 2022718 |  |
|  |  | Mounting bar, straight, $300 \mathrm{~mm}, \mathrm{steel}$ | BEF-KHS-KH1 |  |
|  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}, \mathrm{steel}$ | BEF-MS12G-A |  |  |

Plug connectors and cables
Connecting cables with female connector
M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, | Cable, open <br> conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  | F-pin, straight, unshielded | Cable, open <br> Female connector, M12, <br> 5-pin, angled, unshielded | $2 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |

M12, 8-pin, PUR, halogen-free

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 8-pin, angled, shielded | Cable, open <br> conductor heads | $2 \mathrm{~m}, 8$-wire | DOL-1208- |  |

$\rightarrow$ For additional accessories, please see page K-240

## THE INDUSTRY CHOICE FOR HIGH-SPEED AND PRECISION MARK DETECTION



## Product description

Extremely high speeds, poor contrasts and reflective materials are no problem for the KT10-2. Ease of use is the defining feature of the second generation of the KT10. Even during the teach-in phase, the sensor selects the transmission color that best matches the existing contrast. And, the sensor adjusts itself if marks need to be detected on glossy foils. In addition, the sensor compensates for dirt build-up on lenses using

## At a glance

- Very low jitter (< $10 \mu \mathrm{~s}$ )
- Precise light spot
- Best contrast resolution thanks to RGB LED technology


## Your benefits

- Very precise detection of print marks enables optimal results for packaging and printing applications
- All contrast marks, even pale yellow on white paper, can be reliably detected thanks to RGB LED technology
- Automatic drift correction helps detect difficult to see marks, such as faded print marks, enabling higher production reliability
automatic drift correction. The KT102 offers an exceptionally fast switching frequency, an easy-to-read bar graph display and 2 light exits. The bar graph display provides visible confirmation of the teach-in and can be used to monitor the sensor's status during operation. The sensor's two interchangeable light exits enable the KT10-2 to be mounted in more places.
- Two interchangeable light exits
- Automatic drift correction
- Fast switching frequency of 25 kHz
- Easy-to-read bar graph display
- Reliable operation, even with highgloss reflective surfaces, increasing throughput
- Simple teach-in via an external signal can be performed while the material is moving, enabling shorter setup time
- Long-lasting, tough metal housing

[^14]For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.


## Detailed technical data

## Features

| Dimensions (W x H x D) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance ${ }^{\mathbf{1})}$ | 10 mm |
| Housing design (light emission) | Rectangular |
| Sensing distance tolerance | $\pm 3 \mathrm{~mm}$ |
| Light source ${ }^{2)}$ | LED |
| Type of light | RGB |
| Wave length | $640 \mathrm{~nm}, 525 \mathrm{~nm}, 470 \mathrm{~nm}$ |
| Light emission | Long and short side of housing, exchangeable |
| Light spot size | $0.8 \mathrm{~mm} \times 4$ mm |
| Light spot direction ${ }^{3)}$ | Vertical / Horizontal (depending on type) |
| Teach-in mode | Static 2-point teach-in, Dynamic teach-in (min/max) |
| Function | Automatic drift correction |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{u}}=+25^{\circ} \mathrm{C}$.
${ }^{3)}$ In relation to long side of housing.

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3}$ | < 120 mA |
| Switching frequency ${ }^{4)}$ | 25 kHz |
| Response time ${ }^{5}$ | $20 \mu \mathrm{~s}$ |
| Jitter | < $10 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{S}}-\leq 2 \mathrm{~V} / \mathrm{LOW}$ approx. $0 \mathrm{~V} / \mathrm{NPN}:$ HIGH $=$ approx. $\mathrm{V}_{\mathrm{S}} / \mathrm{LOW} \leq 2 \mathrm{~V}$, |
| Output type | PNP / NPN (depending on type) |
| Output current $\mathrm{I}_{\text {max. }}$ | 100 mA |
| Input, teach-in (ET) | PNP: Teach: U = $10 \mathrm{~V} . . .<\mathrm{U}_{\mathrm{v}}$; Run: $\mathrm{U}<2 \mathrm{~V}$ <br> NPN: Teach: U < 2 V; Run: U=10 V ... < U |
| Input, blanking input (AT) | PNP: Blanked: U > $10 \mathrm{~V} . . .<\mathrm{Uv}$; Free-running: U < $2 \mathrm{~V}{ }^{6)}$ NPN: Blanked: U < 2 V ; Free-running: $\mathrm{U}>10 \mathrm{~V} \ldots<\mathrm{Uv}{ }^{6)}$ |
| Retention time (ET) | 25 ms , non-volatile memory |
| Time delay | 20 ms , adjustable |
| Connection type | Connector M12, 5-pin |
| Protection class ${ }^{7}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression, Outputs overcurrent and short-circuit protected |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, zinc diecast |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
${ }^{4)}$ With light/dark ratio 1:1.
${ }^{5)}$ Signal transit time with resistive load.
${ }^{6)}$ AT $>200 \mu \mathrm{~s}$.
${ }^{7)}$ Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-10^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/KT10

| Light spot direction ${ }^{1)}$ | Output type | Type | Part no. |
| :---: | :---: | :---: | :---: |
| Vertical | PNP | KT10W-2P1115 | 1028232 |
|  | NPN | KT10W-2N1115 | 1028233 |
| Horizontal | PNP | KT10W-2P2115 | 1029070 |
|  | NPN | KT10W-2N2115 | 1029071 |

${ }^{1)}$ In relation to long side of housing.

Dimensional drawing (Dimensions in mm (inch))

(1) Lens (light transmission)
(2) M5 threaded mounting hole, 5.5 mm deep
(3) See dimensional drawing of lens
(4) Blind screw can be replaced by pos. 1
(5) Connector M12 (rotatable up to $90^{\circ}$ )

Adjustments

(1) Function signal indicators (yellow)
(2) Bar graph (green)
(3) Teach-in button/"+" and "-" button

Connection diagram
Cd-313
$-\operatorname{brn} \frac{1}{1}+(L+)$
wht!
blui 3 -(M)
$\rightarrow$ blk! $\frac{4}{5} \mathrm{Q}$
$\xrightarrow[- \text { gra; } 5]{5}$ Teach

Sensing distance
KT8 CAN, KT10-2


Setting the switching threshold
Teach-in dynamic

## 1. Position background



Press and hold SET button. Emitted light turns white.
2. Move at least one repeat length using the light spot


Hold down SET button.


B

## Teach-in static

## 1. Position mark



Press and hold SET button > 1 s .
Red emitted light and yellow LED flash.

## 2. Position background



Press and hold SET button > 1 s .
Yellow LED goes out.
Optimum emitted light is selected.

## Note

The bar display visualizes the detection reliability during teach-in. The more LEDs that illuminate, the better the teach-in: 1 LED illuminates = operation not reliable - lowest contrast difference
$\leq 4$ LEDs illuminate $=$ operation OK - sufficient contrast difference
> 4 LEDs illuminate $=$ reliable operation - high contrast difference


## Switching characteristics

Light/dark setting is defined using teach-in sequence.
The switching threshold is set in the center between the background and the mark.
Teach-in and the light/dark setting can also be configured using an external control signal.

## Recommended accessories

Universal bar clamp systems

| Figure | Material | Pescription | Type |
| :--- | :--- | :--- | :--- | :--- |
|  | Plate G for universal clamp bracket |  | BEF-KHS-G01 |
|  | Plate K for universal clamp bracket | 2022464 |  |
|  | Steel, zinc coated | Universal clamp bracket for rod mounting | BEF-KHS-K01 |
|  |  | Mounting bar, straight, 200 mm, steel | 2022718 |
|  |  | Mounting bar, straight, 300 mm, steel | BEF-KHS-KH1 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12G-A |

Plug connectors and cables
Connecting cables with female connector
M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | D0L-1205-W05M | 6009869 |

[^15]
## COLOR SENSORS



## Focus on color

Color sensors detect the color of a surface. The sensors cast light (red, green, and blue LEDs) on the objects to be tested, calculate the chromaticity coordinates from the reflected radiation and compare them with previously stored reference colors. If the color values are
within the set tolerance range, a switching output is activated.

## Your benefits

- Identify and store up to eight colors. No need to reprogram the sensor for changeovers, reducing downtime.
- High resolution colors can be matched exactly for better process reliability
- Simple, intuitive operation saves time
- Broad spectrum of color tolerances enables more flexible use


|  | General information | C-88 |
| :---: | :---: | :---: |
|  | Product family overview . . | C-93 |
| 7 | CSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-94Mini, easy, smart |  |
|  | CS8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-100 <br> High-performance color sensing |  |

## THEY'LL NEVER MAKE YOU BLUE

When confronted with too many colors, some people start to see red. In situations like this, you need something that will keep a cool head and retain control - likeSICK color sensors, which will give you the green light for color detection and distinction.

Whenever color is the most important criterion for precise detection, checking, and sorting, SICK color sensors are the right choice. They
offer impressively simple teach-in, high switching frequencies, and numerous application possibilities.


## INTELLIGENT COLOR DETECTION

Thanks to additive color mixing, the color sensors are able to generate white light with red, green, and blue light emitting diodes ( $\bullet \bullet, R G B)$. The sensors send this light to the object to be detected. The sensors calculate the chromaticity coordinates from the beam reflected from the object and compare these with the previously stored reference tristimulus values.

If the color values are within the set tolerance band, a switching output is activated. Intelligent analysis in the sensor provides the basis for reliable operation.


## Teach-in



Reference colors can be easily stored via the teach-in procedure. If the color sensor detects the stored value, it automatically activates the switching output.


Tolerance


Tolerances can be easily configured for color sensors, ranging from coarse to fine depending on the application.


Coarse tolerance setting


Fine tolerance setting

Light spot


The size of the color sensor's light spot depends on the sensing distance.


Large light spot: immune to surface shadows and dirt due to surface integration. Ideal for process control, e.g. to check whether the correct label roll is selected.


Small light spot: for accurate positioning and precise switching, e.g. for register control.

## TYPICAL APPLICATIONS

## Stamp monitoring



The CS8 color sensor securely and reliably checks that the taught red stamping is present and legible.

## PSDI control on a packaging machine

For aesthetic reasons, the manufacturer does not want print marks or the associated reading lines on the back of the packaging. The color sensor controls the packaging process based solely on a color element in the print image. Here, oneoff teach-in to the color sensor is sufficient. With the small, precise light spot, the color sensor scans the foil and switches whenever it detects the taught color. Print marks are, therefore, no longer necessary.


## Food industry

In the food industry, CSM color sensors are used to detect print errors on packaging. So that packages with incorrect printing can be rejected reliably, the correct color or color scheme is taught in on the color sensor through a simple teach-in operation and the tolerance is set. This means that erroneous packages will be detected and removed.


## PRODUCT FAMILY OVERVIEW

|  |  | CS8 |
| :---: | :---: | :---: |
|  | Mini, easy, smart | High-performance color sensing |
| Technical data overview |  |  |
| Sensing distance | 12.5 mm | $\begin{gathered} 12.5 \mathrm{~mm} \\ 60 \mathrm{~mm} \end{gathered}$ |
| Light spot size | $1.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$ | $2 \mathrm{~mm} \times 4 \mathrm{~mm}$ $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ |
| Switching frequency | 1.7 kHz | 1 color up to 6 kHz 4 colors up to 3.5 kHz |
| Response time | $300 \mu \mathrm{~s}$ | 1 color up to $85 \mu \mathrm{~s}$ 4 colors up to $145 \mu \mathrm{~s}$ |
| Output type | PNP / NPN | PNP / NPN |
| Output (channel) | 1 color | 1 color 4 colors |
| Adjustment | 1-point-teach-in | Static 1-point teach-in |
| Connection type | Cable with male connector | Male connector |
| At a glance |  |  |
|  | - Color sensor in a new miniature housing <br> - Static and teach-in method for 1 color using control cable or control panel <br> - Over IO-Link up to 8 colors teachable <br> - Switching frequency: 1.7 kHz <br> - Sensing distance: 12.5 mm <br> - Compatibility with older color sensors thanks to cable with male connector M12 | - One (CS8-1) or four (CS8-4) colors can be saved <br> - 12.5 mm or 60 mm sensing distance <br> - Fast response time up to $85 \mu \mathrm{~s}$ <br> - High resolution color <br> - Bar graph display shows the correlation of the colors <br> - Extremely precise light spot and high resolution <br> - Metal housing with two light exits (interchangeable) |
| Detailed information | $\rightarrow \mathrm{C}-94$ | $\rightarrow \mathrm{C}-100$ |

## MINI, EASY, SMART



## Product description

The new CSM color sensor from SICK offers improved gloss behavior combined with an IO-Link function and a miniature housing. The CSM is ideal for applications where color characteristics need to be detected reliably and installation space is at a premium. The sensor detects and monitors objects on the basis of their color. The small CSM

## At a glance

- Color sensor in a new miniature housing
- Static and teach-in method for 1 color using control cable or control panel
- Over IO-Link up to 8 colors teachable


## Your benefits

- Fast, seamless integration into existing applications thanks to a new miniature housing, saving time and money
- Increased switching frequency for improved machine productivity
- Flexible application possibilities thanks to a wide range of color tolerances
color sensor can be set using a simple teach-in method, while the new IO-Link function enables intelligent diagnostics, visualization of sensor parameters, and straightforward format changes. Thanks to a switching frequency of up to 1.7 kHz , the CSM is also suitable for use with high-speed machines and manufacturing processes.
- Switching frequency: 1.7 kHz
- Sensing distance: 12.5 mm
- Compatibility with older color sensors thanks to cable with male connector M12
- Enhanced, intelligent diagnostics and visualization, as well as quick and easy format changes, thanks to IOLink function
- Quick and easy installation cuts down on installation time
- Sorting processes are simplified by the distinction of up to 8 colors in one job

[^16]For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.


## Detailed technical data

## Features

| Dimensions (W x H x D) | $12 \mathrm{~mm} \times 32 \mathrm{~mm} \times 22 \mathrm{~mm}$ |
| :--- | :--- |
| Housing design (light emission) | Rectangular |
| Light source ${ }^{1)}$ | LED |
| Type of light | RGB |
| Wave length | $640 \mathrm{~nm}, 525 \mathrm{~nm}, 470 \mathrm{~nm}$ |
| Teach-in mode | 1-point-teach-in |
| ${ }^{1)}$ Average service life: $100,000{\text { h at } \mathrm{T}_{u}=+25^{\circ} \mathrm{C} .}$ |  |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 12 V DC ... 24 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $<5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | $<50 \mathrm{~mA}$ |
| Switching frequency ${ }^{4}$ | 1.7 kHz |
| Response time ${ }^{5}$ | $300 \mu \mathrm{~s}$ |
| Jitter | $150 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{S}^{-}} \leq 2 \mathrm{~V} /$ LOW approx. 0 V <br> NPN: HIGH = approx. V $/$ LOW $\leq 2 \mathrm{~V}$ <br> (depending on type) |
| Output (channel) | 1 color / 8 colors via IO-Link |
| Output current $I_{\text {max. }}{ }^{6}$ ) | < 100 mA |
| Input, teach-in (ET) | PNP <br> Teach: $\mathrm{U}=10 \mathrm{~V} . . .<\mathrm{U}_{\mathrm{v}}$ <br> Run: $\mathrm{U}<2 \mathrm{~V}$ or open <br> NPN <br> Teach: U < 2 V <br> Run: $\mathrm{U}=10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ or open (depending on type) |
| Connection type | Cable with connector M12, 4-pin, 0.2 m |
| Protection class | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 67 |
| Weight | 25 g |
| Housing material | Plastic, ABS |

${ }^{1)}$ Limit values: DC $12 \mathrm{~V}(-10 \%)$... DC $24 \mathrm{~V}(+20 \%)$. Operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
4) With light/dark ratio 1:1.
${ }^{5)}$ Signal transit time with resistive load.
${ }^{6)}$ At supply voltage $>24 \mathrm{~V}, \mathrm{I}_{\max }=30 \mathrm{~mA}$. $I_{\max }$ is consumption count of all $Q_{n}$.

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/CSM

- Sensing distance tolerance: $\pm 3 \mathrm{~mm}$
- Light spot direction: vertical

| Sensing distance ${ }^{1)}$ | Light spot size | Fieldbus interface | Output type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12.5 mm | $\begin{gathered} 1.5 \mathrm{~mm} x \\ 6.5 \mathrm{~mm} \end{gathered}$ | - | PNP | Cd-092 | CSM-WP11122P | 1067291 |
|  |  |  | NPN | Cd-092 | CSM-WN11122P | 1067293 |
|  |  | IO-Link | PNP | Cd-321 | CSM-WP117A2P | 1067294 |

Dimensional drawing (Dimensions in mm (inch))


Connection diagram
Cd-092 Cd-321

(1) Optical axis receiver
(2) Optical axis sender
(3) Fixing hole M3
(4) Cable with male connector

## Adjustments


(1) Status indicator LED, yellow: Status switching output Q (2) Status indicator LED green: supply voltage on
(3) Teach-in button

Sensing distance


## Setting the switching threshold

## 1. Trigger teach-in



Position object in light field. Press teach-in button >1 s.
2. Select color tolerance


Press teach-in button when transmitted light is green = tolerance medium (standard setting).


Press teach-in button when transmitted light is blue $=$ tolerance precise.


Press teach-in button when
transmitted light is red
= tolerance coarse.

Teach-in can also be performed using an external control signal (only dynamic teach-in).
Keylock activation and deactivation: hold down teach-in button > 30 s .
Teach-in failure: yellow LED indicator and the transmitted light of the sensor flashing quickly.

## Recommended accessories

## Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Plate L for universal clamp bracket | BEF-KHS-L01 | 2023057 |
|  | Zinc plated steel (sheet), diecast zinc (clamp) | Plate N08 for universal clamp bracket | BEF-KHS-N08 | 2051607 |
|  | Stainless steel 1.4571 (sheet), stainless steel 1.4408 (clamp) | Plate N08N for universal clamp bracket | BEF-KHS-N08N | 2051616 |
|  | Steel, zinc coated | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} x$ 150 mm, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Mounting brackets and mounting plates

## Mounting brackets

| Figure | Material | Description | Part no. |  |
| :---: | :---: | :---: | :---: | :---: |
| Stainless steel | Mounting bracket for wall mounting | Type | BEF-W100-A |  |
|  | Steel, zinc coated | Mounting bracket for floor mounting | 5311520 |  |
|  |  |  | BEF-W100-B | 5311521 |

## Mounting plates

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Stainless steel | Adapter plate CSM1 to CSM | BEF-AP-KTMS01 | 2068786 |

Modules and gateways
Connection modules

| Figure | Description | Type | Part no. |
| :---: | :---: | :---: | :---: |
|  | IO-Link version V1.1, Port class 2, PIN 2, 4, 5 galvanically connected, Supply voltage 18 V DC ... 32 V DC (limit values, operation in short-circuit protected network max. 8 A) | SICK Memory Stick | 1064290 |
|  | IO-Link V1.1 Class A port, USB2.0 port, optional external power supply 24V / 1A | SiLink2 Master | 1061790 |

## Plug connectors and cables

Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |

[^17]
## HIGH-PERFORMANCE COLOR SENSING

## C



## Additional information

$\qquad$
Ordering information . . . . . . . . . .C-102
Dimensional drawing . . . . . . . . . . C-102
Connection diagram. . . . . . . . . . .C-102
Adjustments . . . . . . . . . . . . . . . . .C-103
Display color correspondence. . .C-104
Setting the switching threshold .C-103
Recommended accessories . . . .C-104

## Product description

The ability to teach up to four colors can lead to faster changeovers and shorter downtime. The CS8 series offers high switching speeds - as fast as 6 kHz ( $85 \mu \mathrm{sec}$ ) - enabling higher throughput. And, the sensor maintains the extreme precision of the lightspot; this sharp,

At a glance

- One (CS8-1) or four (CS8-4) colors can be saved
- 12.5 mm or 60 mm sensing distance
- Fast response time up to $85 \mu \mathrm{~s}$
- High resolution color


## Your benefits

- Identify and store up to four colors. No need to reprogram the sensor for changeovers, reducing downtime.
- High resolution colors can be matched exactly for better process reliability
- Maintains the extreme precision of the light spot, enabling a consistent object detection
well-defined spot provides tighter process control and more consistent object detection. A bar graph display enables easy setup and provides information about the color quality and detection reliability.
- Bar graph display shows the correlation of the colors
- Extremely precise light spot and high resolution
- Metal housing with two light exits (interchangeable)
- A bar graph display provides information about the color quality and detection reliability, ensuring simple process monitoring
- Broad spectrum of color tolerances enables more flexible use
- Fast response times at high speeds for reliable detection
- Detection reliability is not affected by varying temperatures


## $\rightarrow$ www.sick.com/de/en/CS8

For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

## Detailed technical data

## Features

| Dimensions (W x H x D) | $30.4 \mathrm{~mm} \times 80 \mathrm{~mm} \times 53 \mathrm{~mm}$ |
| :--- | :--- |
| Housing design (light emission) | Rectangular |
| Light source ${ }^{\text {1) }}$ | LED |
| Type of light | RGB |
| Wave length | $640 \mathrm{~nm}, 525 \mathrm{~nm}, 470 \mathrm{~nm}$ |
| Teach-in mode | Static 1-point teach-in |
| ${ }^{1)}$ Average service life: 100,000 h at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$. |  |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $<5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | < 120 mA |
| Switching output | PNP: HIGH = $\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} /$ LOW approx. $0 \mathrm{~V} / \mathrm{NPN}$ : HIGH = approx. $\mathrm{V}_{\mathrm{s}} / \mathrm{LOW} \leq 2 \mathrm{~V}$ (depending on type) |
| Output current $\mathrm{I}_{\text {max. }}{ }^{\text {a }}$ | < 100 mA |
| Input, teach-in (ET) | PNP <br> Teach: $\mathrm{U}=10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ <br> Run: $U<2 \mathrm{~V}$ <br> NPN <br> Teach: U < 2 V <br> Run: $U=10 \mathrm{~V} \ldots<U_{V}$ |
| Input, blanking input (AT) | PNP <br> Blanked: U > $10 \mathrm{~V} \ldots<\mathrm{Uv}$ <br> Free-running: $U<2 V^{5}$ ) <br> NPN <br> Blanked: U < 2 V <br> Free-running: U > $10 \mathrm{~V} \ldots<\mathrm{Uv}^{5)}$ |
| Retention time (ET) | 25 ms , non-volatile memory |
| Time delay | Deactivation delay 20 ms , shiftable |
| Connection type | Connector M12, 5-pin, male connector M12, 8-pin (depending on type) |
| Protection class ${ }^{6}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Fieldbus interface | - |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, zinc diecast |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
${ }^{4}$ ) Consumption count Q1 / Q2.
${ }^{5}$ ) $\mathrm{AT}>200 \mu \mathrm{~s}$.
${ }^{6)}$ Reference voltage DC 32 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/CS8
CS8-1, 1 color

- Switching frequency: 1 kHz, 3 kHz, 6 kHz (adjustable, with light/dark ratio 1:1.)
- Response time: $500 \mu \mathrm{~s}, 160 \mu \mathrm{~s}, 85 \mu \mathrm{~s}$ (Signal transit time with resistive load.)
- Connection type: connector M12, 5 -pin

| Sensing distance ${ }^{1)}$ | Sensing distance tolerance | Light spot size | Light spot direction | Output type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12.5 mm | $\pm 3 \mathrm{~mm}$ | $2 \mathrm{~mm} \times 4 \mathrm{~mm}$ | Vertical | PNP | Cd-313 | CS81-P1112 | 1028224 |
|  |  |  |  | NPN | Cd-313 | CS81-N1112 | 1028228 |
| 60 mm | $\pm 9 \mathrm{~mm}$ | $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ | - | PNP | Cd-313 | CS81-P3612 | 1028225 |
|  |  |  |  | NPN | Cd-313 | CS81-N3612 | 1028229 |

${ }^{1)}$ From front edge of Iens.

CS8-4, 4 colors

- Switching frequency: $0.5 \mathrm{kHz}, 1 \mathrm{kHz}, 3.5 \mathrm{kHz}$ (adjustable, with light/dark ratio 1:1.)
- Response time: $1,000 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 145 \mu \mathrm{~s}$ (Signal transit time with resistive load.)
- Connection type: male connector M12, 8 -pin

| Sensing distance ${ }^{1)}$ | Sensing distance tolerance | Light spot size | Light spot direction | Output type | Connection diagram | Type | Part no . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12.5 mm | $\pm 3 \mathrm{~mm}$ | $2 \mathrm{~mm} \times 4 \mathrm{~mm}$ | Vertical | PNP | Cd-311 | CS84-P1112 | 1028226 |
|  |  |  |  | NPN | Cd-311 | CS84-N1112 | 1028230 |
| 60 mm | $\pm 9 \mathrm{~mm}$ | $13 \mathrm{~mm} \times 13 \mathrm{~mm}$ | - | PNP | Cd-311 | CS84-P3612 | 1028227 |
|  |  |  |  | NPN | Cd-311 | CS84-N3612 | 1028231 |

${ }^{1)}$ From front edge of lens.

Dimensional drawing (Dimensions in mm (inch))


Connection diagram
Cd-311


Cd-313

(1) Lens (light transmission)
(2) M5 threaded mounting hole, 5.5 mm deep
(3) See dimensional drawing for lens
(4) Blind screw can be replaced by lens
(5) Connector M12 (rotatable up to $90^{\circ}$ )

## Adjustments

## CS8-1


(1) Function signal indicators (yellow)
(2) Bar graph (green), Power on left LED
(3) Teach-in button/"+" and "-" button

## Setting the switching threshold

CS8-1

## 1. Trigger teach-in



Position object in light field. Press SET button > 1 s .
2. Select color tolerance


If necessary adapt tolerance with
"+" button (more coarse) or "-" button (more precise).

CS8-4

(1) Function signal indicators (yellow)
(2) Bar graph (green), Power on left LED
(3) Teach-in button/"+"" and "-" button
3. Confirm teach-in


Press SET button > 1 s .
Color correspondence is visualized via bar graph display.

CS8-4

## 1. Trigger teach-in



Position object in light field.
Press SET button > 1 s .
2. Select color tolerance


If requested adapt tolerance with
" + " button (more coarse) or
"-" button (more precise).
Press SET button > 1 s .
3. Allocate channel to color


Allocate channel for color with
"+" button (Q1 to Q4) or
"-" button (Q4 to Q1).
Press SET button > 1 s .
4. Confirm teach-in


Press SET button > 1 s . Color correspondence is visualized via bar graph display.

Display of the color correspondence


Color detected $=\mathbf{Q}$ active.


Color just detected = $\mathbf{Q}$ active.
3. No correspondence


Color not detected $=\mathbf{Q}$ inactive.

## Special settings

"Evaluation mode," "Tolerance change during operation," "Show quality," "Time stage," and "Output logic" can be set via a special menu (cf. appropriate operating instructions for the device).

$<1 \mathrm{~s}=$ navigate
>1 s = select/confirm

## Recommended accessories

## Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Plate G for universal clamp bracket | BEF-KHS-G01 | 2022464 |
|  |  | Plate K for universal clamp bracket | BEF-KHS-K01 | 2022718 |
|  |  | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} \times 150 \mathrm{~mm}$, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

Plug connectors and cables
Connecting cables with female connector
M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-G10M | 6010544 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05M | 6009869 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-W10M | 6010542 |

M12, 8-pin, PVC

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 8-pin, straight, shielded | Cable, open conductor <br> heads | $2 \mathrm{~m}, 8$-wire | DOL-1208-G02MA | 6020633 |


| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 8 -pin, angled, shielded | Cable, open conductor <br> heads | $2 \mathrm{~m}, 8$-wire | DOL-1208-W02MA | 6020992 |

$\rightarrow$ For additional accessories, please see page K-240

## LUMINESCENCE SENSORS



## The bright idea for fluorescent material

Luminescence sensors detect visible and non-visible marks that illuminate when using ultraviolet (UV) light. Fluorescent material and marks are reliably detected independently of their pattern, colors or surface conditions on any material. Luminescence sensors emit UV light with a wave length of approximately 375 nm . Fluorescent substances
convert the UV light into long-wave visible light, which is then received and evaluated by the luminescence sensor.

## Your benefits

- $90 \%$ of the applications can be solved using the default factory setting. A simple setup permits the adjustment to specific tasks.
- Set up in minutes, saving time and money
- The right solution for everybody there is a wide range of models, depending on applications
- Filters ensure that background luminescence is reliably suppressed, enabling greater process reliability


D

|  | General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-108 Product family overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-112 |
| :---: | :---: |
|  | LUTM. D-114 <br> Small, intelligent luminescence sensor |
|  | LUT3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D-120 <br> The solution for standard applications |
|  | LUT8 <br> For universal use with easy adjustment |
|  | LUT9 <br> The new standard for high-performance luminescence sensors |

## CAN YOU SEE WHAT IT SEES?

Sometimes there is no point in taking a second look: Some things simply cannot be detected. And that is why even a detective needs the right tool to hunt down clues. SICK luminescence sensors deploy a UV light to uncover things that would otherwise remain concealed.

Luminescence sensors detect marks that light up exclusively under UV light. This is due to fluorescent substances contained in the mark,
which convert UV light into visible light. The luminescence sensor receives the light reflected by the object and analyzes it.


## LUMINOPHORES PROVIDE THE CRUCIAL CLUE

The illumination effect of the fluorescent substances is attributable to admixed luminophores - small particles that convert UV light into visible light in different wavelength ranges and at different intensities. Luminophores can be admixed with almost all substances. Typical examples are chalk or wax crayon, ink, oil, grease, labels, and felt-tip pens.


## Operating principle

Luminescence sensors emit modulated UV light with a wavelength of 375 nm . This stimulates fluorescent substances, which send back light with a long wavelength in the visible spectrum (approx. 420 to 750 nm ). Luminescence sensors detect this light and analyze it.


## Function of the filters

The example shows the use of the RG610 filter. Wavelength ranges below 610 nm (purple, blue, green) are suppressed and only visible light with a wavelength of more than 610 nm (red) reaches the receiver. This means that disruptive background luminescences that light up green or blue can be reliably suppressed, e.g. a red mark on white paper.


## Luminescence scale

The luminescence scale (available from SICK) is used as the reference for the switching properties of the luminescence sensors. The luminescence scale can be used to check readability under different signal intensities to achieve reliable use in different areas of application. The check is a relative mea-


## TYPICAL APPLICATIONS

## Woodworking industry: Calculating capping

Knotholes and other "flaws" in wooden boards are marked for subsequent removal by sawing. The luminescence sensor picks up fluorescent chalk or ink on a very wide range of wood. Due to their large sensing distances, the sensors can also be mounted at greater distances from the objects to be detected. This means that marks can be reliably detected on different thicknesses of wood - without any mechanical adjustment to the sensors. Their robust metal housing allows the sensors to be used in harsh industrial conditions too.

## Woodworking industry: Monitoring adhesive application

Once the dispenser has applied the adhesive layer, the LUT9 luminescence sensor checks for the adhesive based on the presence of luminophores in the adhesive.
surement between the scale and the test material with the aid of the analog output. With the LUT8 and LUT9 sensors, the bar graph shows the luminescence intensity - left $30 \%$, right $200 \%$ in relation to the reference, depending on the sensing distance.

$30 \%$ signal strength in relation to the reference


200 \% signal strength in relation to the reference


Food and beverage industry


## Pharmaceutical industry

Whether inserting package slips into packages or attaching labels to ampules, luminescence sensors maximize process reliability. For this to be possible, a high switching frequency and detection reliability are required - precisely the qualities offered by the luminescence sensors.

## Automotive industry: Front screen quality control

Before a windshield is used, the IVC-2D 2D vision sensor checks whether this is a front screen with a heating wire. The luminescence sensor detects whether a protective coating against UV light is present. The UV light-sensitive sensor is configured such that the path of the sensor beam goes through the front screen onto a mark on the robot. If the front screen is not coated, the beam can detect the mark through the glass unhindered. If the glass has a UV coating, on the other hand, the sensor beam is interrupted.


## PRODUCT FAMILY OVERVIEW

| Technical data overview |  |  |
| :---: | :---: | :---: |
| Sensing distance | 12.5 mm |  |
| Type of light | UV | UV |
| Light emission | Long side | Long side |
| Switching frequency | 6 kHz | 1.5 kHz |
| Response time | $80 \mu s$ | 350 s |
| Analog output $\mathrm{Q}_{\mathrm{A}}$ | - | - |
| Adjustment | 2-point teach-in static/dynamic | Manual (potentiometer) |
| Connection type | Cable with connector M12, 4-pin | Connector M12, 4-pin |

## At a glance

- Luminescence sensor in a miniature housing
- Static and dynamic teach-in methods in a single variant
- Reliable detection even at a low level luminescence
- Switching frequency of 6 kHz
- Operating range 8 ... 20 mm
- Remote monitoring and rapid analysis using IO-Link function
- Compatibility with older LUT sensors thanks to cable with male connector M12 $\rightarrow$ D-114 $\rightarrow$ D-120


LUT8


LUT9
The new standard for high-performance luminescence sensors

For universal use with easy adjustment
10 mm
20 mm
50 mm
90 mm
UV
Long side
2.5 kHz
$200 \mu \mathrm{~s}$
$0 \mathrm{~mA} \ldots 13 \mathrm{~mA}$
Manual (rotary switch)

Connector M12, 5-pin

10 mm
20 mm

## 50 mm

90 mm

$$
150 \mathrm{~mm}
$$

UV / visible blue light
Long side / Long and short side, exchangeable
0.5 kHz
2.5 kHz
6.5 kHz
$1 \mathrm{~ms} / 200 \mu \mathrm{~s} / 75 \mu \mathrm{~s}$
$0 \mathrm{~mA} . . .13 \mathrm{~mA}$
Static 2-point teach-in with manual fine adjustment / IO-Link (optional)
Connector M12, 5-pin Connector M12, 4-pin

- Simple teach-in
- Operating range up to 250 mm
- Version with IO-Link for remote monitoring
- Bar graph display provides information about the luminescence intensity
- High speed ( 6.5 kHz ), standard ( 2.5 kHz ), high resolution ( 500 Hz ) models
- Additional optical filters suppress background luminescence
- Fiber-optic cable connection (with 20 mm lens)
- Switching and analog output
- Tough metal housing
- Simple sensitivity adjustment in 8 stages
- Bar graph display provides information about the luminescence intensity
- Sensing distances selectable through interchangeable lenses
- Additional optical filters suppress background luminescence
- Fiber-optic cable connection (with 20 mm lens)
- Switching and analog output
- Operating range: $0 \mathrm{~mm} . . .20 \mathrm{~mm} / 10 \mathrm{~mm} . . .40 \mathrm{~mm} /$ $20 \mathrm{~mm} . . .70 \mathrm{~mm} / 30 \mathrm{~mm} . . .110 \mathrm{~m}$ $\rightarrow$ D-126


## SMALL, INTELLIGENT LUMINESCENCE SENSOR



## Product description

Enhanced performance for fluorescent materials: The new LUTM luminescence sensor from SICK features a novel miniature housing combined with an IO-Link function. The LUTM is ideal for all applications where fluorescent marks need to be reliably detected in confined spaces. Even when the level of luminescence is low, the LUTM detects the relevant marks using its enhanced system

## At a glance

- Luminescence sensor in a miniature housing
- Static and dynamic teach-in methods in a single variant
- Reliable detection even at a low level luminescence
- Switching frequency of 6 kHz


## Your benefits

- Miniature housing enables installation in small spaces
- Quick and easy commissioning saves time and money
- Increased switching frequency for improved machine productivity
sensitivity. This mini luminescence sensor can be set using a straightforward teach-in method. The innovative IO-Link function enables enhanced, intelligent diagnostics and visualization of sensor parameters, as well as provide quick and easy format changes. Thanks to an increased switching frequency of up to 6 kHz , the LUTM is also suitable for high machine production capacities.
© IO-Link


| Additional information |  |
| :---: | :---: |
| Detailed technical data | D-115 |
| Ordering information | D-116 |
| Dimensional drawing | D-116 |
| Adjustments | D-116 |
| Connection diagram. | D-117 |
| Sensing distance | D-117 |
| Setting the switching threshold | D-118 |
| Recommended accessories .. | D-119 |

[^18]

- Enhanced, intelligent diagnostics and visualization of sensor parameters, as well as quick and easy format changes, thanks to IO-Link function


## Detailed technical data

## Features

| Dimensions (W x H x D) | $31.5 \mathrm{~mm} \times 21 \mathrm{~mm} \times 12 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance ${ }^{\mathbf{1})}$ | 12.5 mm |
| Housing design (light emission) | Rectangular |
| Operating range | $8 \mathrm{~mm}, 20 \mathrm{~mm}$ |
| Light source ${ }^{2)}$ | LED |
| Type of light | Ultraviolet light |
| Wave length | 370 nm |
| Light emission | Long side |
| Light spot size ${ }^{3)}$ | $2 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ |
| Light spot direction | Vertical |
| Receiving range | $450 \mathrm{~nm} \ldots 750 \mathrm{~nm}$ |
| Adjustment | $2-$ point teach-in static/dynamic |
| Output function ${ }^{4}$ ) | Light/dark switching |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.
${ }^{3)}$ At sensing distance.
${ }^{4}$ ) L/D switching via teach-in.

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 12 V DC ... 24 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | $\leq 50 \mathrm{~mA}$ |
| Switching frequency ${ }^{4}$ | 6 kHz |
| Response time ${ }^{5}$ | $80 \mu \mathrm{~s}$ |
| Jitter | $40 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{S}}-\leq 2 \mathrm{~V} / \mathrm{LOW}$ approx. $\mathrm{O} \mathrm{V} / \mathrm{NPN}$ : HIGH $=$ approx. $\mathrm{V}_{\mathrm{S}} / \mathrm{LOW} \leq 2 \mathrm{~V}$, |
| Output type | PNP / NPN |
| Output current $I_{\text {max. }}{ }^{6}$ ) | < 100 mA |
| Input, teach-in (ET) | PNP <br> Teach: $\mathrm{U}=10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ <br> Run: U < 2 V <br> NPN <br> Teach: $\mathrm{U}<2 \mathrm{~V}$ <br> Run: $U=10 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ <br> (depending on type) |
| Connection type | Cable with connector M12, 4-pin |
| Protection class | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Fieldbus interface | - / IO-Link (depending on type) |
| Enclosure rating | IP 67 |
| Weight | 25 g |
| Housing material | Plastic, ABS |

[^19]
## Ambient data

| Ambient operating temperature | $-10{ }^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/LUTM

- Light spot size: $2 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ (At sensing distance.)
- Receiving range: $450 \mathrm{~nm} . . .750 \mathrm{~nm}$
- Connection type: Cable with connector M12, 4-pin

| Sensing <br> distance ${ }^{1)}$ | Operating range | Output type | Fieldbus <br> interface | Connection <br> diagram | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - | Cd-023 | LUTM-UP81162P | 1067295 |
| 12.5 mm | $8 \mathrm{~mm} \ldots 20 \mathrm{~mm}$ | PNP | IO-Link | Cd-321 | LUTM-UP817A2P | 1067297 |
|  |  | NPN | - | Cd-023 | LUTM-UN81162P | 1067296 |

${ }^{1)}$ From front edge of lens.

Dimensional drawing (Dimensions in mm (inch))


Adjustments

(1) Status indicator LED, yellow: Status switching output Q
(2) Status indicator LED green: supply voltage on
(3) Teach-in button

[^20]Connection diagram

| Cd-023 | Cd-321 |
| :---: | :---: |
| $- \text { bri! } 1$ | $-\frac{\operatorname{brn} \cdot 1}{1}+(L+)$ |
| -whti 2 Teach | $\rightarrow$ blk $\underline{4}_{4}^{4} \mathrm{C} / \mathrm{Q}$ |
| $\rightarrow \text { bıki }^{i} \text { Q }$ | blui 3 -(M) |
| $\text { blu! } 3 \text { - (M) }$ | $\frac{\mathrm{wht}!}{---!}=$ |

Sensing distance


## Setting the switching threshold

Setting the switching threshold (static)

## 1. Position fluorecent mark



Press and hold teach-in button > $1<3 \mathrm{~s}$. Yellow LED flashes slowly.
2. Position background


Press and hold teach-in button < 3 s. Yellow LED goes out.

Setting the switching threshold (dynamic)

1. Position background


Press the teach-in button and keep it pressed. LED flashing slowly.
2. Move at least the fluorecent mark and background using the light spot.



Release the teach-in button.


Yellow LED will illuminate, when emitted light is on the fluorecent mark.

## Sensitivity setting

Signal
strength


## Switching characteristics

Static teach-in: light/dark setting is defined using teach-in sequence.
Dynamic teach-in: switching output active on fluorecent mark, if background is longer in the field of view during the teach-in. The switching threshold is set automatically between the background and the mark.

Teach-in can also be performed using an external control signal (only dynamic teach-in).
Keylock activation and deactivation: hold down teach-in button > 30 s .
Teach-in failure: yellow LED indicator and the transmitted light of the sensor flashing quickly.
For dynamic teach-in with ET signal ( 5 Hz ) via switching output Q.

## Recommended accessories

## Modules and gateways

Connection modules

| Figure | Description | Type | Part no. |
| :---: | :---: | :---: | :---: |
|  | IO-Link version V1.1, Port class 2, PIN 2, 4, 5 galvanically connected, Supply voltage 18 V DC ... 32 V DC (limit values, operation in short-circuit protected network max. 8 A) | SICK Memory Stick | 1064290 |
|  | IO-Link V1.1 Class A port, USB2.0 port, optional external power supply 24V / 1A | SiLink2 Master | 1061790 |

Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Plate L for universal clamp bracket | BEF-KHS-L01 | 2023057 |
|  | Zinc plated steel (sheet), Diecast zinc (clamp) | Plate N08 for universal clamp bracket | BEF-KHS-N08 | 2051607 |
|  | Stainless steel <br> 1.4571 (sheet), Stainless steel 1.4408 (clamp) | Plate N08N for universal clamp bracket | BEF-KHS-N08N | 2051616 |

## Mounting brackets and mounting plates

Mounting brackets

| Figure | Material | Description | Type |
| :---: | :---: | :---: | :---: | :---: |
| Stainless steel | Mounting bracket for wall mounting | Part no. |  |
|  | Steel, zinc coated | Mounting bracket for floor mounting | BEF-W100-A |

## Mounting plates



## Plug connectors and cables

Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |

[^21]
## THE SOLUTION FOR STANDARD APPLICATIONS



## Product description

Whether ensuring that the package insert is in the packaging or the labels are on the vial - the LUT3-6 luminescence sensor permits reliable monitoring. For

## At a glance

- Tough metal housing
- Operating range: $0 \mathrm{~mm} . . .15 \mathrm{~mm}$ / $10 \mathrm{~mm} . .35 \mathrm{~mm} / 30 \mathrm{~mm} . . .60 \mathrm{~mm}$


## Your benefits

- Sensitivity of the sensor can be infinitely adjusted using a potentiometer, saves time and reduces costs
optimum adjustment to the fluorescent mark, the sensitivity of the LUT3-6 luminescence sensor is set with an infinite potentiometer.
- Sensing distances selectable through interchangeable lenses
- Transmitter LED UV (375 nm)
- Filters ensure that background luminescence is reliably suppressed, ensuring greater process reliability
- Interchangeable lenses for different sensing distances provide flexibility

[^22]

## Detailed technical data

## Features

| Dimensions (W x H x D) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance | $10 \mathrm{~mm}^{1)} / 20 \mathrm{~mm}^{1)} / 50 \mathrm{~mm}^{\text {1) }}$ (depending on type) |
| Housing design (light emission) | Rectangular |
| Operating range | $0 \mathrm{~mm} \ldots 15 \mathrm{~mm} / 10 \mathrm{~mm} \ldots 35 \mathrm{~mm} / 30 \mathrm{~mm} \ldots 60 \mathrm{~mm}$ (depending on type) |
| Light source ${ }^{2)}$ | LED |
| Type of light | UV |
| Wave length | 375 nm |
| Light emission | Long side |
| Light spot direction | Vertical |
| Receiving filters | KV 418 (standard) |
| Receiving range | $450 \mathrm{~nm} \ldots 750 \mathrm{~nm}$ |
| Adjustment | Manual (potentiometer) |
| Output function | Light switching |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 12 V DC... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $<2 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | $<60 \mathrm{~mA}$ |
| Switching frequency ${ }^{4)}$ | 1.5 kHz |
| Response time ${ }^{5)}$ | $350 \mu \mathrm{~s}$ |
| Switching output | $\begin{aligned} & \text { PNP: } \mathrm{HIGH}=\mathrm{V}_{\mathrm{s}}-\leq 3 \mathrm{~V} / \mathrm{LOW}=\text { approx. } \mathrm{O} \mathrm{~V} \\ & \text { NPN: } \mathrm{HIGH}=\text { approx. } \mathrm{V}_{\mathrm{S}} / \mathrm{LOW} \leq 2 \mathrm{~V} \end{aligned}$ |
| Output type | PNP / NPN |
| Output current $\mathrm{I}_{\text {max. }}$ | 100 mA |
| Connection type | Connector M12, 4-pin |
| Protection class ${ }^{6)}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Fieldbus interface | - |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, zinc diecast |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
${ }^{4)}$ With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6}$ ) Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/LUT3

| Sensing distance ${ }^{1)}$ | Operating range | Light spot size | Type |
| :---: | :---: | :---: | :---: | :---: |
| 10 mm | $0 \mathrm{~mm} \ldots 15 \mathrm{~mm}$ | $2 \mathrm{~mm} \times 6 \mathrm{~mm}$ | Part no. |
| 20 mm | $10 \mathrm{~mm} \ldots 35 \mathrm{~mm}$ | $3 \mathrm{~mm} \times 9 \mathrm{~mm}$ | LUT3-610 |
| 50 mm | $30 \mathrm{~mm} \ldots 60 \mathrm{~mm}$ | $5 \mathrm{~mm} \times 15 \mathrm{~mm}$ | LUT3-620 |
| LUT3-650 | 1015396 |  |  |

${ }^{1)}$ From front edge of lens.

Dimensional drawing (Dimensions in mm (inch))

(1) M5 threaded mounting hole, 5.5 mm deep
(2) Light spot direction
(3) Center of optical axis
(4) Connector M12 (rotatable up to $90^{\circ}$ )
(5) See dimensional drawing for lens

Adjustments

(1) Function signal indicator (green)
(2) Not connected
(3) Sensitivity adjustment
(4) Function signal indicator (yellow), switching output

Connection diagram


Sensing distance

(1) Sensing distance 10 mm
(2) Sensing distance 20 mm
(3) Sensing distance 50 mm

## Light spot size

## Sensing distance $\mathbf{1 0 ~ m m}$



## Sensing distance $\mathbf{2 0} \mathbf{~ m m}$



Sensing distance $\mathbf{5 0} \mathbf{~ m m}$


Setting the switching threshold
Potentiometer

## 1. Position mark


urn "Sensitivity" rotary switch clockwise until yellow LED illuminates.

## 2. Position background



If yellow LED illuminates, turn "Sensitivity" rotary switch counter-clockwise until the yellow LED just goes out.

Note
Adjustments are intendend for luminescence background suppression.

## Recommended accessories

## Lens and accessories

| Description | Diameter | Part no. |
| :--- | :--- | :--- | :--- |
| Lens, 10 mm sensing distance | 26 mm | Type |
| Lens, 20 mm sensing distance | 26 mm | OBJ-LUT3-10 |
| Lens, 50 mm sensing distance | 26 mm | OBJ-LUT3-20 |

## Reference materials

| Material | Description | Part no. |
| :---: | :--- | :--- | :--- |
| Crayon | Crayon, red fluorescence | Type |
| Writing chalk | Writing chalk, red fluorescence | LUM-FT |
|  |  | LUM-KLK |

Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Plate G for universal clamp bracket | BEF-KHS-G01 | 2022464 |
|  |  | Plate K for universal clamp bracket | BEF-KHS-K01 | 2022718 |
|  |  | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} \times 150 \mathrm{~mm}$, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

Plug connectors and cables
Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |

$\rightarrow$ For additional accessories, please see page K-240

## FOR UNIVERSAL USE WITH EASY ADJUSTMENT

## Product description

The strength of the LUT8 is its straightforward operating concept. The sensitivity of the LUT8, and the switching reliability, can easily be adapted to the mark to be detected with the help of the

## At a glance

- Tough metal housing
- Simple sensitivity adjustment in 8 stages
- Bar graph display provides information about the luminescence intensity
- Sensing distances selectable through interchangeable lenses


## Your benefits

- An 8-step rotary switch easily adjusts to accurately determine the switching output position for different materials
- Bar graph display provides continual process control through easy visualization of the luminescence intensity

8-position rotary switch. An additional advantage is the bar graph display which visualizes the luminescence intensity of the mark and that of the background.

- Additional optical filters suppress background luminescence
- Fiber-optic cable connection (with 20 mm lens)
- Switching and analog output
- Operating range: 0 mm ... 20 mm / $10 \mathrm{~mm} . .40 \mathrm{~mm} / 20 \mathrm{~mm} . .$. $70 \mathrm{~mm} / 30 \mathrm{~mm} . . .110 \mathrm{~m}$
- Filters ensure that background luminescence is reliably suppressed, ensuring greater process reliability
- Interchangeable lenses for different sensing distances provide flexibility

[^23]

## Detailed technical data

## Features

| Dimensions (W $\mathbf{x H} \mathbf{~ x ~ D ) ~}$ | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance ${ }^{\mathbf{1})}$ | $10 \mathrm{~mm} / 20 \mathrm{~mm} / 50 \mathrm{~mm} / 90 \mathrm{~mm}$ (depending on type) |
| Housing design (light emission) | Rectangular |
| Operating range | $0 \mathrm{~mm} \ldots 20 \mathrm{~mm} / 10 \mathrm{~mm} \ldots 40 \mathrm{~mm} / 20 \mathrm{~mm} \ldots 70 \mathrm{~mm} / 30 \mathrm{~mm} \ldots . .110 \mathrm{~mm}$ (depending on <br> type) |
| Light source ${ }^{2)}$ | LED |
| Type of light | UV |
| Wave length | 375 nm |
| Light emission | Long side |
| Light spot direction | Vertical |
| Receiving range | $450 \mathrm{~nm} \ldots 750 \mathrm{~nm}$ (depending on type) |
| Adjustment | Manual (rotary switch) |
| Output function | Light switching |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 12 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $<5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | < 100 mA |
| Switching frequency ${ }^{4}$ | 2.5 kHz |
| Response time ${ }^{5}$ | $200 \mu \mathrm{~s}$ |
| Switching output | $\begin{aligned} & \text { PNP: HIGH }=\mathrm{V}_{\mathrm{S}}-\leq 3 \mathrm{~V} / \mathrm{LOW}=\text { approx. } \mathrm{O} \mathrm{~V} \\ & \text { NPN: } \mathrm{HIGH}=\text { approx. } \mathrm{V}_{\mathrm{S}} / \mathrm{LOW} \leq 2 \mathrm{~V} \end{aligned}$ |
| Output type | PNP / NPN |
| Analog output $\mathrm{Q}_{\mathrm{A}}$ | $0 \mathrm{~mA} . . .13 \mathrm{~mA}$ |
| Output current $\mathrm{I}_{\text {max. }}$ | 100 mA |
| Connection type | Connector M12, 5-pin |
| Protection class ${ }^{6)}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Fieldbus interface | - |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, zinc diecast |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
${ }^{4}$ ) With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6}$ ) Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/LUT8

| Sensing distance ${ }^{1)}$ | Operating range | Light spot size | Receiving filters | Receiving range | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 mm | $0 \mathrm{~mm} . . .20 \mathrm{~mm}$ | $2 \mathrm{~mm} \times 6 \mathrm{~mm}$ | KV 418 (standard) | $450 \mathrm{~nm} . . .750 \mathrm{~nm}$ | LUT8U-11101 | 1046711 |
| 20 mm | $10 \mathrm{~mm} . . .40 \mathrm{~mm}$ | $3 \mathrm{~mm} \times 9 \mathrm{~mm}$ | KV 418 (standard) | $450 \mathrm{~nm} . . .750 \mathrm{~nm}$ | LUT8U-11201 | 1047042 |
| 50 mm | $20 \mathrm{~mm} . . .70 \mathrm{~mm}$ | $5 \mathrm{~mm} \times 15 \mathrm{~mm}$ | KV 418 (standard) | $450 \mathrm{~nm} . . .750 \mathrm{~nm}$ | LUT8U-11301 | 1047043 |
|  |  |  | OG 570 | 570 nm ... 750 nm | LUT8U-11311 | 1047045 |
|  |  |  | RG 610 | $610 \mathrm{~nm} . . .750 \mathrm{~nm}$ | LUT8U-11321 | 1047046 |
|  |  |  | RG 665 | 670 nm ... 750 nm | LUT8U-11331 | 1047047 |
|  |  | $\varnothing 6 \mathrm{~mm}$ | KV 418 (standard) | $450 \mathrm{~nm} . . .750 \mathrm{~nm}$ | LUT8U-11701 | 1047048 |
| 90 mm | $30 \mathrm{~mm} . . .110 \mathrm{~mm}$ | $12 \mathrm{~mm} \times 12 \mathrm{~mm}$ | KV 418 (standard) | $450 \mathrm{~nm} . . .750 \mathrm{~nm}$ | LUT8U-11401 | 1047044 |

${ }^{1)}$ From front edge of lens.

Dimensional drawing (Dimensions in mm (inch))

(1) M5 threaded mounting hole, 5.5 mm deep
(2) Light spot direction
(3) Center of optical axis
(4) Connector M12 (rotatable up to $90^{\circ}$ )
(5) See dimensional drawing for lens

Adjustments

(1) Rotary selection switch
(2) Function signal indicator (yellow), switching output
(3) Bar graph (green), Power on left LED

Sensing distance

(1) Sensing distance 10 mm
(2) Sensing distance 20 mm
(3) Sensing distance 50 mm
(4) Sensing distance 90 mm

## Light spot size

Sensing distance $\mathbf{1 0} \mathbf{~ m m}$


Sensing distance 20 mm


Sensing distance 50 mm


Sensing distance 90 mm


## Setting the switching threshold

Rotary switch

## 1. Position mark



Turn "Sensitivity" rotary switch clockwise until yellow LED illuminates.

## 2. Position background



If yellow LED illuminates, turn "Sensitivity" rotary switch counter-clockwise until the yellow LED just goes out.

## Sensitivity setting

## Signal



## D

## Note

The bar graph display shows the luminescence intensity (regardless of switching threshold setting).
Adjustments are intendend for luminescence background suppression.

Recommended accessories
Lens and accessories

| Description | Diameter | Type |
| :--- | :--- | :--- | :--- |
| Lens, 10 mm sensing distance | 26 mm | Part no. |
| Lens, 20 mm sensing distance | 26 mm | OBJ-LUT3-10 |
| Lens, 50 mm sensing distance | 26 mm | OBJ-LUT3-20 |
|  | OBJ-LUT3-50 |  |

## Reference materials

| Material | Description | Part no. |  |
| :---: | :--- | :--- | :--- | :--- |
| Crayon | Crayon, red fluorescence | Type | LUM-FT |
| Writing chalk | Writing chalk, red fluorescence | 1004460 |  |
|  |  | LUM-KLK |  |

Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Plate G for universal clamp bracket | BEF-KHS-G01 | 2022464 |
|  |  | Plate K for universal clamp bracket | BEF-KHS-K01 | 2022718 |
|  |  | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, 150 mm x 150 mm, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Plug connectors and cables

Connecting cables with female connector
M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05M | 6009869 |

[^24]
## Product description

The LUT9 luminescence sensor offers a long sensing distance and remote monitoring capabilities via IO-Link. With a sensing distance of up to 250 mm , the LUT9 sets a new standard for luminescence sensors. Due to the long distances possible between the sensor and the object, marks on lumber with varying thicknesses, for example, can be reliably detected without mechanical adjustment of the sensors. In

## At a glance

- Simple teach-in
- Operating range up to 250 mm
- Version with IO-Link for remote monitoring
- Bar graph display provides information about the luminescence intensity


## Your benefits

- Simple sensitivity adjustment via teach-in for optimum adaptation to the application
- Long sensing distance tolerance leads to less mechanical height adjustments of the sensor on the machine
- Using IO-Link, the sensor can be configured and monitored by the central control system, enabling simple, cost-effective diagnostics and data collection
addition, the teach function and manual fine adjustment allow for maximum process reliability. The LUT9 version with IO-Link can actively be integrated into the machine control logic, configured/ monitored from the controller, and used for process data collection. Especially helpful is a bar graph display on the device indicating the luminescence intensity.
- High speed ( 6.5 kHz ), standard ( 2.5 kHz ), high resolution $(500 \mathrm{~Hz}$ ) models
- Additional optical filters suppress background luminescence
- Fiber-optic cable connection (with 20 mm lens)
- Switching and analog output
- Bar graph display provides continual process control through easy visualization of the luminescence intensity
- Filters ensure that background luminescence is reliably suppressed, ensuring greater process reliability
- Interchangeable lenses for different sensing distances and the second light exit provide flexibility
- High detection reliability ensures the process and reduces downtime
- Select speed or high resolution, making it ideal for any application.
Additional information
Detailed technical data . . . . . . . D-133
Ordering information . . . . . . . . . D-134
Dimensional drawings . . . . . . . . D-135
Adjustments . . . . . . . . . . . . . . D-136
Connection diagram . . . . . . . . . D-136
Sensing distance . . . . . . . . . . . . D-137
Light spot size . . . . . . . . . . . . . . D-137
Setting the switching threshold D-138
Recommended accessories . . . D-139


## © IO-Link <br> C $\in$

## Additional information

Detailed technical data . . . . . . . D-133
Ordering information ......... . D-134
Dimensional drawings . . . . . . . . D-135
Adjustments . . . . . . . . . . . . . . . D-136
Connection diagram. . . . . . . . . D-136
Sensing distance . . . . . . . . . . . . .D-137
Light spot size. .........
Setting the switching threshold D-138
Recommended accessories ... D-139

[^25] more.


## Detailed technical data

## Features

| Dimensions (W x H x D) | $30.4 \mathrm{~mm} \times 53 \mathrm{~mm} \times 80 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance ${ }^{\mathbf{1})}$ | $10 \mathrm{~mm} / 20 \mathrm{~mm} / 50 \mathrm{~mm} / 90 \mathrm{~mm} / 150 \mathrm{~mm}$ (depending on type) |
| Housing design (light emission) | Rectangular |
| Light source ${ }^{\text {2) }}$ | LED |
| Type of light | UV/visible blue light (depending on type) |
| Wave length | $470 \mathrm{~nm} / 375 \mathrm{~nm}$ (depending on type) |
| Light emission | Long side / Long and short side, exchangeable (depending on type) |
| Light spot direction | Vertical |
| Receiving range | $450 \mathrm{~nm} . . .750 \mathrm{~nm}$ (depending on type) |
| Adjustment | Static 2-point teach-in with manual fine adjustment / IO-Link (optional) (depending on type) |
| Output function ${ }^{3)}$ | Light switching |

${ }^{1)}$ From front edge of lens.
${ }^{2)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.
${ }^{3}$ ) L/D switching via teach-in or IO-Link.

## Mechanics/electronics

| Supply voltage ${ }^{\text {1) }}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $<5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | < 100 mA |
| Switching frequency ${ }^{4}$ | $0.5 \mathrm{kHz} / 2.5 \mathrm{kHz} / 6.5 \mathrm{kHz}$, adjustable |
| Response time ${ }^{5}$ | $1 \mathrm{~ms}, 200 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} /$ LOW approx. 0 V NPN: HIGH = approx. $\mathrm{V}_{\mathrm{s}} /$ LOW $\leq 2 \mathrm{~V}$ |
| Output type | PNP / NPN |
| Analog output $\mathrm{Q}_{\mathrm{A}}$ | $0 \mathrm{~mA} . . .13 \mathrm{~mA}$ |
| Output current $I_{\text {max. }}$ | 100 mA |
| Time delay | $0 \mathrm{~ms} / 10 \mathrm{~ms} / 20 \mathrm{~ms}$, adjustable |
| Connection type | Connector M12, 5-pin / Connector M12, 4-pin (depending on type) |
| Protection class ${ }^{6)}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Fieldbus interface | - / IO-Link (depending on type) |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, zinc diecast |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4)}$ With light/dark ratio 1:1, no time delay.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6}$ ) Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/LUT9
Sensing distance: 10 mm

- Light spot size: $2 \mathrm{~mm} \times 6 \mathrm{~mm}$
- Operating range: $0 \mathrm{~mm} . . .20 \mathrm{~mm}$

| Type of light | Light <br> emission | Receiving <br> range | Output type | Fieldbus <br> interface | Connection | Connection <br> diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ultraviolet <br> light | Long side | $450 \mathrm{~nm} \ldots$ <br> 750 nm | PNP/NPN | - | Connector <br> M12, $5-\mathrm{pin}$ | Cd-312 | LUT9U-11106 | 1047049 |

Sensing distance: 20 mm

- Light spot size: $3 \mathrm{~mm} \times 9 \mathrm{~mm}$
- Operating range: $10 \mathrm{~mm} . . .40 \mathrm{~mm}$

| Type of light | Light emis- <br> sion | Receiving <br> range | Output type | Fieldbus <br> interface | Connection | Connection <br> diagram | Part no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Long side | $450 \mathrm{~nm} \ldots$ <br> 750 nm | PNP/NPN | - | Connector <br> M12, $5-\mathrm{pin}$ | Cd-312 | LUT9U-11206 | 1047050 |
| Ultraviolet <br> light | Long and <br> short side, <br> exchange- <br> able | $450 \mathrm{~nm} \ldots$ <br> 750 nm | PNP/NPN | - | Connector <br> M12, $5-\mathrm{pin}$ | Cd-321 | LUT9U-12206 | 1046749 |
|  | Long side | $450 \mathrm{~nm} \ldots$ <br> 750 nm | PNP | IO-Link | Connector <br> M12, 4-pin | Cd-321 | LUT9U-P120L | 1046188 |

Sensing distance: 50 mm

- Light spot size: $5 \mathrm{~mm} \times 15 \mathrm{~mm}$
- Operating range: $20 \mathrm{~mm} . . .70 \mathrm{~mm}$

| Type of light | Light emission | Receiving range | Output type | Fieldbus interface | Connection | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ultraviolet light | Long side | $\begin{gathered} 450 \mathrm{~nm} . . . \\ 750 \mathrm{~nm} \end{gathered}$ | PNP/NPN | - | Connector M12, 5-pin | Cd-312 | LUT9U-11306 | 1046712 |
|  |  | $\begin{gathered} 570 \mathrm{~nm} \ldots \\ 750 \mathrm{~nm} \end{gathered}$ | PNP/NPN | - | Connector M12, 5-pin | Cd-312 | LUT9U-11316 | 1047052 |
|  |  | $\begin{gathered} 610 \mathrm{~nm} . . . \\ 750 \mathrm{~nm} \end{gathered}$ | PNP/NPN | - | Connector M12, 5-pin | Cd-312 | LUT9U-11326 | 1047053 |
|  |  | $\begin{gathered} 670 \mathrm{~nm} . . . \\ 750 \mathrm{~nm} \end{gathered}$ | PNP/NPN | - | Connector M12, 5-pin | Cd-312 | LUT9U-11336 | 1047054 |
|  | Long and short side, exchangeable | $\begin{gathered} 450 \mathrm{~nm} \ldots \\ 750 \mathrm{~nm} \end{gathered}$ | PNP/NPN | - | Connector M12, 5-pin | Cd-321 | LUT9U-12306 | 1047055 |
|  | Long side | $\begin{gathered} 450 \mathrm{~nm} \ldots \\ 750 \mathrm{~nm} \end{gathered}$ | PNP | IO-Link | Connector M12, 4-pin | Cd-321 | LUT9U-P130L | 1045606 |

Sensing distance: 90 mm

- Light spot size: $12 \mathrm{~mm} \times 12 \mathrm{~mm}$
- Operating range: 30 mm ... 110 mm

| Type of light | Light <br> emission | Receiving <br> range | Output type | Fieldbus <br> interface | Connection | Connection <br> diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ultraviolet <br> light | Long side | $450 \mathrm{~nm} \ldots$ <br> 750 nm | PNP/NPN | - | Connector <br> M12, 5-pin | Cd-312 | LUT9U-11406 | 1047051 |

Sensing distance: 150 mm

- Light spot size: $5 \mathrm{~mm} \times 12 \mathrm{~mm}$
- Operating range: $50 \mathrm{~mm} . . .250 \mathrm{~mm}$

| Type of light | Light emission | Receiving range | Output type | Fieldbus interface | Connection | Connection diagram | Type | Part $n 0$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ultraviolet light | Long side | $\begin{gathered} 450 \mathrm{~nm} \ldots \\ 750 \mathrm{~nm} \end{gathered}$ | PNP/NPN | - | Connector M12, 5-pin | Cd-312 | LUT9U-11606 | 1047414 |
| Visible blue light | Long side | $\begin{gathered} 610 \mathrm{~nm} \ldots \\ 750 \mathrm{~nm} \end{gathered}$ | PNP/NPN | - | Connector M12, 5-pin | Cd-312 | LUT9B-11626 | 1047056 |

Dimensional drawings (Dimensions in mm (inch))
LUT9x-x1xxx, light Emission: Long side

(1) M5 threaded mounting hole, 5.5 mm deep
(2) Lens (light transmission), can be replaced by blind screw
(3) Center of optical axis
(4) Connector M12 (rotatable up to $90^{\circ}$ )
(5) See dimensional drawing for lens
(6) Blind screw can be replaced by lens

LUT9x-x2xxx, light emission: long and short side, exchangeable

(1) M5 threaded mounting hole, 5.5 mm deep
(2) Lens (light transmission), can be replaced by blind screw
(4) Connector M12 (rotatable up to $90^{\circ}$ )
(5) See dimensional drawing for lens
(6) Blind screw can be replaced by lens

Adjustments

(1) Rotary selection switch
(2) Function signal indicator (yellow), switching output
(3) Bar graph (green), Power on left LED
(4) Teach-in button

Connection diagram

| Cd-312 | Cd-321 |
| :---: | :---: |
| $-\pi \operatorname{brn}_{1}^{1}+(\mathrm{L}+)$ | $-e^{\mathrm{brn}}{ }^{1}+(\mathrm{L}+)$ |
| $\rightarrow$ whti $\frac{2}{2} \mathrm{Q}_{\text {NPN }}$ | $\rightarrow$ blk |
| blu ${ }^{3}$-(M) | blui 3 -(M) |
| $\rightarrow \text { biki }_{1}^{1} \underline{Q_{P N P}}$ | wht! 2 Q |
| $\rightarrow$ grai $5 \mathrm{Q}_{\mathrm{A}}$ |  |

Sensing distance

(1) Sensing distance 10 mm
(2) Sensing distance 20 mm
(3) Sensing distance 50 mm
(4) Sensing distance 90 mm
(5) Sensing distance 150 mm

## Light spot size

## Sensing distance $\mathbf{1 0} \mathbf{~ m m}$



Sensing distance 20 mm


Sensing distance $\mathbf{5 0} \mathbf{~ m m}$


Sensing distance $\mathbf{9 0} \mathbf{m m}$


Sensing distance 150 mm


## Setting the switching threshold

Button +/-

## 1. Position mark



Turn rotary switch to " + " position and press and hold teach-in button until yellow light goes out (more green LEDs illuminate on the bar display).

## 2. Position background

If yellow LED illuminates, turn rotary switch to "-" position and rotary switch to "-" position and
press and hold teach-in button until yellow light just goes out (green LEDs go out on the bar display).


## Sensitivity setting



## Note for all settings

Once configuration is complete, turn the rotary switch to the "RUN" position. The bar display then shows the luminescence intensity (regardless of switching threshold setting).
Adjustments are intendend for luminescence background suppression.
Teach-in static

## 1. Position mark



Turn rotary switch to "TEACH" position and press and hold teach-in button > 1 s .
Yellow LED flashes slowly.

## 2. Position background



Press and hold teach-in button again > 1 s . Yellow LED goes out.

## Sensitivity setting



Note
The bar graph display shows detection reliability. The more LEDs that illuminate, the better the teach-in.

## Recommended accessories

## Modules and gateways

Connection modules

| Figure | Description | Type | Part no. |
| :---: | :---: | :---: | :---: |
|  | IO-Link version V1.1, Port class 2, PIN 2, 4, 5 galvanically connected, Supply voltage 18 V DC ... 32 V DC (limit values, operation in short-circuit protected network max. 8 A) | SICK Memory Stick | 1064290 |
|  | IO-Link V1.1 Class A port, USB2.0 port, optional external power supply 24V / 1A | SiLink2 Master | 1061790 |

## Lens and accessories

| Description | Diameter | Type |
| :--- | :--- | :--- | :--- |
| Lens, 10 mm sensing distance | 26 mm | OBJ-LUT3-10 |
| Lens, 20 mm sensing distance | 26 mm | 2016348 |
| Lens, 50 mm sensing distance | 26 mm | OBJ-LUT3-20 |

## Reference materials

| Material | Description | Type | Part no. |
| :---: | :--- | :--- | :--- |
| Crayon | Crayon, red fluorescence | LUM-FT |  |
| Writing chalk | Writing chalk, red fluorescence | LUM-KLK |  |

## Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Plate G for universal clamp bracket | BEF-KHS-G01 | 2022464 |
|  |  | Plate K for universal clamp bracket | BEF-KHS-K01 | 2022718 |
|  |  | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} \times 150 \mathrm{~mm}$, steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Plug connectors and cables

Connecting cables with female connector
M12, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |

M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | 2 m, 5-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05M | 6009869 |

$\rightarrow$ For additional accessories, please see page K-240

D

## GLARE SENSORS



## Gloss and performance combined

The Glare sensor detects and distinguishes glare on even surfaces. It also provides maximum reliability and saves costs. Previously, gloss on object surfaces was a disruptive factor that regularly had engineers breaking into a sweat.

Now, gloss properties are a distinguishing criterion for process control - regardless of color, transparency or pattern. And it will be engineers' eyes that shine, not their brows. Equipped with intelligent Delta-S-Technology, Glare is a
further milestone in customer-oriented sensor development. Once again, SICK is confirming its leading position in optoelectronic sensors for the detection of a range of objects.
General information ..... E-144
Product family overview ..... E-149
Glare ..... E-150
The authority on gloss

## REDEFINING POLISHED PERFORMANCE

Star players are usually applauded for a good performance, so glare sensor from SICK should expect a standing ovation or two. Its performance in detecting and distinguishing between different gloss levels is truly awardworthy.

Previously, gloss on object surfaces was a disruptive factor that regularly had engineers breaking into a sweat. Now, gloss properties are a distinguishing criterion for process control - regardless of color, transparency, or pattern. And it will be engineers' eyes that shine, not
their brows. Equipped with intelligent Delta-STechnology, Glare is a further milestone in sensor development. Once again, SICK confirms its leading position in opto-electronic sensors for the detection of a range of objects.


## ALL THAT GLITTERS IS NOT GOLD

Glare is suitable for all applications in which the gloss of an object is the decisive feature in process control. It not only detects objects based on their gloss properties, but also distinguishes between objects with different gloss levels. The only requirement is an even object surface.


## GLOSS AND PERFORMANCE COMBINED

Glare checks for the presence of glossy objects, regardless of color, transparency, or pattern. The principle of operation is as simple as it is innovative - sheer technological brilliance. This results in exceptionally high process reliability with very low material, installation, and configuration outlay. In inspection tasks, Glare is therefore the cost-efficient alternative to complex camera systems.

Detection on glossy object surfaces


Detection on matte object surfaces


At a defined angle, visible red light lands on the object to be detected. Depending on the gloss level of the surface, it throws back the light beam with a different intensity and scatter. This information is recorded and analyzed via two highresolution line sensors with the patented Delta-S-Technology.

Glare's strengths also include simple installation and commissioning with the SOPAS configuration software and intelligent communication with additional benefits via the IO-Link interface. This results in exceptionally high process reliability with very low material, installation, and configuration outlay. In inspection tasks, Glare is therefore the cost-efficient alternative to complex camera systems.

## TYPICAL APPLICATIONS



## Detecting authenticity features

To protect products against tampering, authenticity features such as seals, holograms, and labels are added to packages before they leave production. Steps must be taken to guarantee that these features are indeed added, for example for medications. If the glare of a feature differs from the packaging material, Glare will reliably detect it - even if a packaging design or writing appears underneath the seal.

## Detecting coatings

The gloss level of moist or dry coatings such as oils, adhesives, and paints differs from that of an object's other, non-coated surfaces. Glare verifies that these coatings have been applied correctly, ensuring quality in the production process.

## Detecting different surface treatments

Smoothing, cleaning, and polishing materials affects their surface structure and, therefore, their gloss properties. Glare checks these surface treatments.

## Detecting protective packaging

Outer packaging for products and protective films for sensitive surfaces are generally made from transparent or glossy materials. Glare reliably verifies the presence of such protective packaging, ensuring an error-free packaging process.

## PRODUCT FAMILY OVERVIEW



## THE AUTHORITY ON GLOSS

## Product description

The Glare sensor is specially designed to recognize and differentiate objects on the basis of their gloss in order to control production processes. The Glare sensor analyzes the spatial distribution of reflected light using Delta-S technology, which allows the sensor to determine the gloss level of flat object surfaces and to differentiate between objects of differing gloss levels. The measurement result is transmitted to the process controls either via two digital switching outputs or IO -Link. Several operating

## At a glance

- Object detection and differentiation on the basis of surface gloss level
- Configurable in many different operating modes to meet the requirements of any application
- Integrated alignment aid
- Integrated automation functions


## Your benefits

- Quick installation via alignment mode
- Integrated key lock reduces the risk of operating errors and tampering
- Sensitivity adjustments increase the system's operational safety
- Teach-in via the single teach-in button or SOPAS operating software facilitates quick and easy operation
- Reliable gloss identification regardless of color, labeling or structure increases operational safety
modes are available, making the Glare sensor perfectly suited to a range of different applications. The combination of intelligent signal evaluation algorithms, the multi-sensor arrangement and sensitivity adjustments ensure increased operational safety in industrial applications. The Glare's IO-Link interface enables the sensor to be integrated into the machine controller, featuring automatic, process-oriented configuration and online diagnostics.
- Two digital push-pull outputs and one configurable input
- Sensitivity adjusts to object properties
- IO-Link provides easy data access from the PLC
- Quick and easy configuration
- State-of-the-art detection method makes it possible to conduct inspections at lower costs than with camera solutions
- Sensor's resistance to object fluctuations increases operational safety
- Flexible sensor settings, monitoring, advanced diagnostics, and visualization thanks to IO-Link

[^26]

## Detailed technical data

## Features

|  | Glare | Glare, IO-Link |
| :---: | :---: | :---: |
| Dimensions (Wx H x D) | 42.5 mm x $44 \mathrm{~mm} \times 43.4 \mathrm{~mm}$ |  |
| Sensor principle | Delta-S-Technology ${ }^{\text {® }}$ |  |
| Sensing distance | 50 mm |  |
| Housing design (light emission) | Rectangular |  |
| Sensing distance tolerance | $\pm 5 \mathrm{~mm}$ |  |
| Tilt angle tolerance | $\pm 5^{\circ}$ |  |
| Minimum detectable object (MDO) | $12 \times 14 \mathrm{~mm}$ |  |
| Light source ${ }^{1)}$ | LED |  |
| Type of light | Visible red light |  |
| Wave length | 640 nm |  |
| Light spot size | $10 \mathrm{~mm} \times 12 \mathrm{~mm}$ |  |
| Object speed max. ${ }^{2}$ | $2 \mathrm{~m} / \mathrm{s}$ |  |
| Sensitivity | Fine, middle, coarse |  |
| Teach-in mode | 1-point teach-in / 2-point teach-in / 2-point teach-in dynamic / 3-point teach-in |  |
| IO-Link | - | $\checkmark$ |
| IO-Link functions | - | Standard functions / advanced functions (depending on type) |
| IO-Link advanced functions | - | Timestamp /High speed counter (depending on type) |

${ }^{1)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.
${ }^{2)}$ Minimum object size.

Mechanics/electronics

|  | Glare | Glare, IO-Link |
| :---: | :---: | :---: |
| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |  |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |  |
| Power consumption ${ }^{3}$ | < 150 mA |  |
| Switching frequency ${ }^{4)}$ | 500 Hz |  |
| Response time ${ }^{5}$ | 1 ms |  |
| Jitter | $500 \mu \mathrm{~s}$ |  |
| Input | HIGH $=>\mathrm{V}_{\mathrm{S}}-2 \mathrm{~V} /$ LOW $=$ open or $<2 \mathrm{~V}$ |  |
| Switching output | Push/Pull (High: $\mathrm{V}_{\mathrm{S}}-3 \mathrm{~V}$, Low: < 3 V ) |  |
| Number of switching outputs | 2 (Q1, Q2) |  |
| Output current $I_{\text {max. }}{ }^{6}{ }^{\text {) }}$ | < 100 mA |  |
| Initialization time | $<2.5$ s |  |
| On delay | - | $0 \mathrm{~s} \ldots 30 \mathrm{~s}$ |
| Off delay | - | $0 \mathrm{~s} \ldots 30 \mathrm{~s}$ |
| Pulse duration | - | $\leq 30$ s |
| Connection type | Connector M12, 5-pin |  |
| Ambient light safety | > 50 klx |  |
| Circuit protection | $\mathrm{A}^{7}, \mathrm{C}^{8)}, \mathrm{D}^{9}$ |  |
| Protection class | III |  |
| Fieldbus interface | - | IO-Link |
| Enclosure rating | IP 67 |  |


|  | Glare | Glare, IO-Link |
| :--- | :--- | :--- |
| Weight | 130 g |  |
| Housing material | Plastic, ABS |  |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4)}$ With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6)}$ Consumption count Q1 / Q2.
${ }^{\text {7) }} \mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected.
${ }^{8)} \mathrm{C}=$ interference suppression.
${ }^{9} \mathrm{D}=$ outputs overcurrent and short-circuit protected.

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to EN $60068-2-27$, single shock $(30 \mathrm{~g} / 11 \mathrm{MS})$, continuous shock $(25 \mathrm{~g} / 11 \mathrm{MS})$ |
| UL File No. | NRKH.E181493 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/Glare

## Glare

| IO-Link | Advanced functions | Adjustment | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | Rotary switch (Sensitivity (Q, Q/, teach-in)) Cable (Teach-in) Single teach-in button (Teach-in) | Cd-280 | OPR20G-RB111517 | 1065685 |

Glare, IO-Link

| IO-Link | Advanced <br> functions |  | Connection <br> diagram | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standard func- |  |  |  |  |
| tions |  |  |  |  |

[^27]Dimensional drawing (Dimensions in mm (inch))

(1) Center of optical axis, sender
(2) Center of optical axis, receiver
(3) Mounting hole
(4) Status indicator LED green: supply voltage on
(5) Status indicator LED, yellow: Detection of gloss level 1
(6) Teach-in mode, inverting switching output
(7) Sensitivity adjustment (A, B, C) / Operating mode (D)
(8) Teach-in button

Connection diagram

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Cd-281


## Recommended accessories

## Modules and gateways

Connection modules

| Figure | Description | Type | Part no. |
| :---: | :---: | :---: | :---: |
|  | IO-Link version V1.1, Port class 2, PIN 2, 4, 5 galvanically connected, Supply voltage 18 V DC ... 32 V DC (limit values, operation in short-circuit protected network max. 8 A) | SICK Memory Stick | 1064290 |
|  | IO-Link V1.1 Class A port, USB2.0 port, optional external power supply 24V / 1A | SiLink2 Master | 1061790 |

Universal bar clamp systems

| Pigure | Part no. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Plug connectors and cables
Connecting cables with female connector
M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05M | 6009869 |

[^28]
## FORK SENSORS



## SICK fork sensors: more models, more functionality

Fork sensors, which operate using a through-beam design, combine the sender and receiver in a single housing. As a result, alignment is no longer timeconsuming. Even very slight differences in light attenuation are detected due to highly focused light emission and high detection accuracy. Easy installation, high immunity to ambient light, and a wide range of fork widths are some of the many advantages that SICK fork
sensors offer. Applications include detecting labels or parts on conveyors.

## Your benefits

- An integrated housing that combines the sender and receiver keeps installation time to a minimum
- A wide variety of fork widths, depths and different detection technologies (IR LED, red LED, laser and ultrasonic) meet any need
- A highly visible light spot in the laser and red light versions make these sensors easy to adjust
- High switching frequencies ensure reliable performance
- High immunity to ambient light provides reliable detection
- Aluminum housing meets requirements for use in general industrial conditions

General information ..... F-158
Product family overview ..... F-162
WFS ..... F-164
Agile and flexible - ideal mounting for labeling applications
UFnext ..... F-170
The clear choice for detecting transparent labels
WFnext ..... F-174WFnext - it's next for high-speed applications
F-182 WFL ..... F-182Get precise detection of small targets with WFL
WFM ..... F-188
WFM - connect and get started


## RELIABLE DETECTION - QUICK AND SIMPLE ADJUSTMENT

Precision means hitting the mark without lengthy preparations. But accuracy is not the only impressive thing about SICK fork sensors. They are also excellently equipped: Their senders and receivers are contained in one housing, saving time during alignment.

Sensors that work on the through-beam principle always require a certain degree of adjustment and alignment. That is, unless the sender and receiver are contained in a stable housing made from plastic or aluminum - like SICK fork
sensors. The variants available - infrared or red light, laser or ultrasonic - therefore have a crucial advantage in the reliable detection of labels, double sheets, and different objects.


## TWO PRINCIPLES OF OPERATION, ONE GOAL

SICK fork sensors work on one of two principles of operation.


## Optical fork sensors

Optical fork sensors detect objects via the interruption of the light beam. Even small differences in light absorption can be detected reliably.

Fields of application

- Label detection
- Counting and positioning objects
- Process control



## Ultrasonic fork sensors

The material properties (e.g. thickness, adhesion), rather than the translucency, are evaluated and detected reliably. Thicker materials absorb the sensor's ultrasound to a greater degree than thin materials. Transparent materials are detected regardless of printing or color.

## Fields of application

- Label detection
- Double sheet detection
- Adhesive surface detection


## Switching output $\overline{\mathrm{Q}}=$ light-switching

The switching output is active when there is no object in the beam path.


In label detection, this means that:
The switching output is active when the label is not
present.

In label detection, this means that:
The switching output is active when the label is present.

## TYPICAL APPLICATIONS

## Label or double sheet detection

Transparent, shiny, metallic labels, white, opaque, and colored carrier materials, thin foils, foil on foil, paper on paper - modern labeling machines are confronted with a variety of materials and surface conditions. SICK fork sensors always offer the right solution. Optical fork sensors reliably recognize opaque labels, for example. Ultrasonic fork sensors detect even transparent materials reliably, regardless of the printing.

WFS - Agile and flexible - ideal mounting for labeling applications


- Infrared emission source
- Optimized housing with slim fork shape
- Dynamic teach-in via IO-Link or control panel and manual fine adjustment with plus/minus button
- Quick format change through simple configuration via IO-Link


UFnext - The clear choice for detecting transparent labels


- Ultrasonic emission source
- Detection of transparent, opaque, or printed labels
- No interference due to metalized colors
- Response time of $250 \mu \mathrm{~s}$



## Object detection

To control various processes logistically, it is necessary to reliably detect certain objects on the conveyor belts. As soon as an object passes the fork sensor, the object is detected. Thanks to different emission sources and sizes, the right fork sensor can always be found for a wide range of requirements. In accordance with the design, the sender and receiver are located in the same housing. Mounting is quick and commissioning correspondingly easy, since no complex, time-consuming alignment is needed.

## WFnext - The all-rounder for high-speed applications



- Infrared emission source
- Simple and precise setting by means of teach-in or manually with plus/minus button
- Fast response time (max. $100 \mu \mathrm{~s}$ )


## WFL - For small parts and precise positioning



- Very precise laser (Class 1)
- Simple and precise adjustment via teach-in
- Minimum detectable object size of just 0.05 mm



## PRODUCT FAMILY OVERVIEW

|  | WFS | UFnext |
| :---: | :---: | :---: |
|  | Agile and flexible - ideal mounting for labeling applications | The clear choice for detecting transparent labels |
| Technical data overview |  |  |
| Functional principle | Optical detection principle | Ultrasonic detection principle |
| Fork width | 3 mm | 3 mm |
| Fork depth | 42 mm | 69 mm |
| MDO | Gap between labels: 2 mm Size of labels: 2 mm | Gap between labels: 2 mm Size of labels: 2 mm |
| Light source | LED | - |
| Switching frequency | $10 \mathrm{kHz} / 15 \mathrm{kHz}$ | 1.5 kHz |
| Response time | $50 \mu \mathrm{~s} / 35 \mu \mathrm{~s}$ | $250 \mu \mathrm{~s}$ |
| Output function | Light/darkswitching, selectable via button | Light/darkswitching, selectable via button |
| Connection type | Connector M8, 4-pin | Connector M8, 4-pin |
| Fieldbus integration | - / IO-Link | - |
| At a glance |  |  |
|  | - Optimized housing with slim fork shape <br> - Dynamic teach-in IO Link or control panel and manual fine adjustment with " + "/"-" buttons <br> - Light/dark switching function <br> - Fast response time of $35 \mu \mathrm{~s}$ <br> - PNP or NPN <br> - IP 65 plastic housing <br> - Switching output also during teach-in active <br> - IO-Link version 1.1 | - Detection of transparent, opaque or printed labels <br> - Unaffected by metallic foils and labels <br> - Fast response time of $250 \mu \mathrm{~s}$ <br> - Simple and accurate adjustment via " + "/"-"-buttons or teach-in <br> - Rugged, IP 65 aluminum housing |
| Detailed information | $\rightarrow \mathrm{F}-164$ | $\rightarrow \mathrm{F}-170$ |



WFnext


WFL


WFM

WFnext - it's next for high-speed applications
Get precise detection of small targets with WFL

Optical detection principle
$2 \mathrm{~mm} . .120 \mathrm{~mm}$
$42 \mathrm{~mm} . . .95 \mathrm{~mm}$
0.2 mm

LED
10 kHz
$100 \mu \mathrm{~s}$
Light/darkswitching, selectable via button Connector M8, 4-pin

Optical detection principle $2 \mathrm{~mm} . .120 \mathrm{~mm}$ $42 \mathrm{~mm} . .95 \mathrm{~mm}$
0.05 mm

Laser
10 kHz
$100 \mu \mathrm{~s}$
Light/darkswitching, selectable via button Connector M8, 4-pin

Optical detection principle
$30 \mathrm{~mm} . . .180 \mathrm{~mm}$
$42 \mathrm{~mm} . . .124 \mathrm{~mm}$
0.8 mm

1 mm
LED
4 kHz
$125 \mu s$
Dark switching / Light switching
Connector M8, 3-pin
Cable, 3-wire 2 m

- Infrared light source
- Simple and accurate adjustment via teach-in or manually via "+"/"-" buttons
- Fast response time (max. $100 \mu \mathrm{~s}$ )
- PNP and NPN switching output
- Light/dark switching function
- 21 different models with different fork widths and depths
- Rugged, IP 65 aluminum housing
- Very precise laser beam (Class 1 laser)
- Simple and accurate adjustment via teach-in
- Fast response time (max. $100 \mu \mathrm{~s}$ )
- Minimum detectable object size of 0.05 mm
- PNP and NPN switching output
- Light/dark switching function
- 21 different models with different fork widths and depths
- Rugged, IP 65 aluminum housing


## AGILE AND FLEXIBLE - IDEAL MOUNTING FOR LABELING APPLICATIONS



## © IO-Link <br> ( $\boldsymbol{E}$.

Additional information
Detailed technical data . . . . . . . . F-165
Ordering information . . . . . . . . . . F-166
Dimensional drawing . . . . . . . . . F-166
Adjustments . . . . . . . . . . . . . . F-166
Connection diagram. . . . . . . . . F-167
Setting the switching threshold . F-167
Recommended accessories . . . F-168

## Product description

The slim, forked shape of the WFS has been specially developed for the requirements of the labeling process. The design allows the sensor to be mounted directly on the edge of the dispenser. Difficulty in detecting the label gap is finally eliminated - the sensor's switch-

## At a glance

- Optimized housing with slim fork shape
- Dynamic teach-in IO Link or control panel and manual fine adjustment with "+"/"-" buttons
- Light/dark switching function


## Your benefits

- Slim design allows flexible mounting close to the dispenser of the label which ensures higher accuracy in the process
- Compact housing ensures spacesaving installation
- User friendly adjustment allows easy and quick start-up
- IO Link or external teach-in allows automatic threshold adjustment via the PLC during the process which ensures reliable detection all the time
ing threshold can be taught-in while the label strip is running. The improved operating concept means the sensor can be adjusted to different labels quickly, easily and reliably. The fast response time guarantees exceptional repeat accuracy.
- Fast response time of $35 \mu \mathrm{~s}$
- PNP or NPN
- IP 65 plastic housing
- Switching output also during teach-in active
- IO-Link version 1.1
- Short and fast response times enables precise detection - even at high web speeds
- IO-Link provides easy data access from the PLC
- Quick and easy integration using function blocks
- Flexible sensor settings, monitoring, advanced diagnostics, and visualization thanks to IO-Link

[^29]For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.


## Detailed technical data

## Features

|  | WFS |  |
| :--- | :--- | :--- |
| Dimensions (W x H x D) | $10 \mathrm{~mm} \times 25 \mathrm{~mm} \times 64.3 \mathrm{~mm}$ | WFS IO-Link |
| Functional principle | Optical detection principle |  |
| Housing design (light emission) | Fork shaped |  |
| Fork width | 3 mm |  |
| Fork depth | 42 mm |  |
| Minimum detectable object (MDO) | Gap between labels: $2 \mathrm{~mm} /$ Size of labels: $\mathbf{2 ~ m m ~}^{\text {1) }}$ |  |
| Label detection | $\boldsymbol{V}$ |  |
| Light source | LED |  |
| Type of light | Infrared light | Dynamic teach-in, Static teach-in, Manual <br> ("+"/"-" button), IO-Link |
| Adjustment | Dynamic teach-in, Static teach-in, Manual <br> (" + "/"-" button) |  |
| Output function | Light/darkswitching, selectable via button |  |

${ }^{1)}$ Depends on the label thickness.

## Mechanics/electronics

|  | WFS | WFS IO-Link |
| :---: | :---: | :---: |
| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |  |
| Ripple ${ }^{2)}$ | < 10 \% |  |
| Power consumption ${ }^{3)}$ | 20 mA |  |
| Switching frequency | $10 \mathrm{kHz}{ }^{4}$ | $15 \mathrm{kHz}{ }^{5}$ |
| Response time ${ }^{6)}$ | $50 \mu \mathrm{~s}$ | $35 \mu \mathrm{~s}$ |
| Stability of response time | $\pm 20 \mu \mathrm{~s}$ |  |
| Jitter | - | $15 \mu \mathrm{~s}$ |
| Switching output | PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} /$ LOW approx. 0 V NPN: HIGH = approx. $\mathrm{V}_{\mathrm{s}} /$ LOW $\leq 2 \mathrm{~V}$ |  |
| Output type | PNP / NPN (depending on type) |  |
| Output current $\mathrm{I}_{\text {max }}$. | 100 mA |  |
| Input, teach-in (ET) | PNP <br> Teach: $\mathrm{U}>5 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$ <br> Run: U<4V <br> NPN <br> Teach: $U<\left(U_{v}-6 V\right)$ <br> Run: $U>\left(U_{V}-5 \mathrm{~V}\right)$ |  |
| Initialization time | 20 ms | 40 ms |
| Connection type | Connector M8, 4-pin |  |
| Ambient light safety | $\leq 10,000 \mathrm{~lx}$ |  |
| Protection class | III |  |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |  |
| Fieldbus interface | - | IO-Link |
| Enclosure rating | IP 65 |  |
| Weight | Approx. 36 g |  |
| Housing material | Plastic, PA (glass-fiber reinforced) |  |

[^30]
## Ambient data

Ambient operating temperature ${ }^{\text {1) }}$ Ambient storage temperature

Shock load

```
-20 ' C ... +60 ' C
-30 ' C ... +80 ' C
```

According to EN 60068-2-27
${ }^{1)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/WFS

## WFS

- Response time: $50 \mu$ (Signal transit time with resistive load.)
- Adjustment: Dynamic teach-in, Static teach-in, Manual ("+"/"-" button)
- Connection type: Connector M8, 4-pin

| Fork width | Fork depth | Output type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 mm | 42 mm | PNP | Cd-092 | WFS3-40P415 |  |
|  |  | NPN | Cd-092 | WFS3-40N415 | 6043919 |

## WFS IO-Link

- IO-Link: $V$
- Response time: $35 \mu \mathrm{~s}$ (Signal transit time with resistive load.)
- Adjustment: Dynamic teach-in, Static teach-in, Manual ("+"/"-" button), IO-Link
- Connection type: Connector M8, 4-pin

| Fork width | Fork depth | Output type | Connection diagram | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 mm | 42 mm | NPN | Cd-278 | WFS3-40N41C | 6053766 |
|  |  | PNP | Cd-278 | WFS3-40P41C | 6053765 |

Dimensional drawing (Dimensions in mm (inch))


Adjustments
WFS

(1) Function signal indicator (yellow), switching output
(2) Function indicator (red)
(3) " + "/"-" buttons and function button

WFS, IO-Link

(1) Function signal indicator (yellow)
(2) Power on funktion (green)
(3) "+"/"-" buttons and function button

[^31]Connection diagram

Cd-092

-     - brn $\frac{1}{2}+(L+)$
-whti 2 Teach
blu! $3-(\mathrm{M})$
$\rightarrow-\operatorname{blk}_{i} \frac{4}{L} Q$

Cd-278
$-{ }_{-1}+(L+)$
blut 3 -(M)
$\rightarrow$ blk! 4 Q/C
wht $\frac{2}{2} M F$

## Setting the switching threshold

## 1. Position label or substrate in the active area of the fork sensor

2. Move multiple labels through the fork sensor


Press both the " + " and "-"
buttons together, hold $>1 \mathrm{~s}$ and than release the teach-in buttons. The red LED flashes.


Press "-" button, teach-in process is finished.

## Notes

Switching threshold adaptation:
Only, the first teach-in procedure after switching on is permanently stored. Teach-in can be repeated cyclically. Switching output also during teach-in active.

+ Once teach-in process is complete, the switching threshold can be adjusted at any time using - the "+" or "-" button. To make minor adjustments, press the " + " or " - " button once. To configure settings quickly, keep the " + " or "-" button pressed for longer.
$\pm \begin{aligned} & 3 \mathrm{~s} \\ & +6\end{aligned}$ Press both the "+" and "-" buttons together (3 seconds) to lock the device and prevent unintentional actuation.
$\pm 4 / \mathrm{D}$ Press both the "+" and "-" buttons together (6 seconds) to define the switching function (light/dark switching). Standard setting: $\mathrm{Q}=$ light switching.

Teach-in (static): Setting the switching threshold without movements of label, cf. operating instruction.

## Recommended accessories

Universal bar clamp systems

| Material | Description | Part no. |
| :---: | :--- | :--- | :--- |
| Steel, zinc coated | Mounting bar, straight | Type |

## Modules and gateways

## Connection modules

| Figure | Description | Type | Part no. |
| :---: | :---: | :---: | :---: |
|  | IO-Link version V1.1, Port class 2, PIN 2, 4, 5 galvanically connected, Supply voltage 18 V DC ... 32 V DC (limit values, operation in short-circuit protected network max. 8 A) | SICK Memory Stick | 1064290 |
|  | IO-Link V1.1 Class A port, USB2.0 port, optional external power supply 24V / 1A | SiLink2 Master | 1061790 |

## Plug connectors and cables

Connecting cables with female connector
M8, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-G02M | 6009870 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | D0L-0804-G05M | 6009872 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | D0L-0804-G10M | 6010754 |
|  | Female connector, M8, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-W02M | 6009871 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | D0L-0804-W05M | 6009873 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-W10M | 6010755 |

[^32]
## THE CLEAR CHOICE FOR DETECTING TRANSPARENT LABELS

## Product description

The UF ultrasonic sensors reliably detects labels and materials, regardless of printed design, transparency or surface characteristics. Unlike optical sensors, the UF3 relies on damping - a process where the thickness of a material determines the degree to which the sensor absorbs sound waves. A high level of positioning accuracy and stable response times make the fork sensor suitable for nearly any environment. Due

## At a glance

- Detection of transparent, opaque or printed labels
- Unaffected by metallic foils and labels


## Your benefits

- Reliable label detection, regardless if labels are transparent, opaque or have a printed design, ensuring greater flexibility with one sensor
- Fast response times enable precise detection - even at high web speeds

[^33] more.
to its small, compact metal housing, the UF can be used in harsh conditions and where space is limited. As a result, the UF3 can distinguish between labels located just 2 mm apart from one another on an adhesive tape. Applications include detecting transparent labels on transparent substrates, detecting labels with different printed designs or differentiating between single- and two-ply materials.

- Fast response time of $250 \mu \mathrm{~s}$
- Simple and accurate adjustment via " + "/"-"-buttons or teach-in
- Rugged, IP 65 aluminum housing
- The aluminum housing meets all requirements for use in harsh industrial conditions
- Setting the switching threshold using the +/- push buttons or teach-in
- Ultrasonic technology prevents false detection, which may be caused by ambient light or shiny surfaces


## Detailed technical data

## Features

| Dimensions (W x H x D) | $18 \mathrm{~mm} \times 47.5 \mathrm{~mm} \times 92.5 \mathrm{~mm}$ |
| :--- | :--- |
| Functional principle | Ultrasonic detection principle |
| Housing design (light emission) | Fork shaped |
| Fork width | 3 mm |
| Fork depth | 69 mm |
| Minimum detectable object (MDO) | Gap between labels: 2 mm <br> Size of labels: 2 mm |
| Label detection | $\boldsymbol{V}$ |
| Adjustment | Dynamic teach-in, Static teach-in |
| Output function | Light/darkswitching, selectable via button |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | < 10 \% |
| Power consumption ${ }^{3)}$ | 40 mA |
| Switching frequency ${ }^{4}$ | 1.5 kHz |
| Response time ${ }^{5}$ | $250 \mu \mathrm{~s}$ |
| Switching output | $\begin{aligned} & \text { PNP: HIGH }=\mathrm{V}_{\mathrm{S}}-\leq 2 \mathrm{~V} / \mathrm{LOW} \text { approx. } 0 \mathrm{~V} \\ & \text { NPN: } \mathrm{HIGH}=\text { approx. } \mathrm{V}_{\mathrm{S}} / \text { LOW } \leq 2 \mathrm{~V} \text { (depending on type) } \end{aligned}$ |
| Output type | PNP / NPN (depending on type) |
| Output current $I_{\text {max. }}{ }^{6}$ ) | 100 mA |
| Input, teach-in (ET) | Teach: $\mathrm{U}>7 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$; Run: $\mathrm{U}<2 \mathrm{~V}$ |
| Initialization time | 100 ms |
| Connection type | Connector M8, 4-pin |
| Protection class ${ }^{7}$ | III |
| Circuit protection | Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 65 |
| Weight | 95 g |
| Housing material | Metal, aluminum |

${ }^{1)}$ Limit values, reverse-polarity protected, operation in short-circuit protected network: max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3)}$ Without load.
${ }^{4}$ ) With light/dark ratio 1:1, typical, dependent on material and speed.
${ }^{5)}$ Signal transit time with resistive load.
${ }^{6)}$ Output current minimal 0.03 mA .
${ }^{\text {7) }}$ Reference voltage DC 50 V .

## Ambient data

| Ambient operating temperature ${ }^{1)}$ | $+5{ }^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ |
| Shock load | According to EN 60068-2-27 |
| EMC $^{2)}$ | EN $60947-5-2$ |

[^34]Ordering information
Other models $\rightarrow$ www.sick.com/de/en/UF

- Connection type: Connector M8, 4-pin

| Fork width | Fork depth | Teach-in | Output type | Connection diagram | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 mm | 69 mm | - | PNP/NPN | Cd-086 | UFN3-70B413 | 6049678 |
|  |  | $\begin{gathered} \text { Teach: } \mathrm{U}>7 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}} \\ \text { Run: } \mathrm{U}<2 \mathrm{~V} \end{gathered}$ | NPN | Cd-092 | UFN3-70N415 | 6049680 |
|  |  |  | PNP | Cd-092 | UFN3-70P415 | 6049679 |

Dimensional drawing (Dimensions in mm (inch))


Adjustments
(1) (2)
(1) Function signal indicator (yellow), switching output
(2) Function indicator (red)
(3) "+"/"-" buttons and function button
(1) Fork opening: fork width 3 mm , forks depth 69 mm
(2) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$
(3) Detection axis

Connection diagram

Cd-086

-     - -1


Cd-092

-     - $-1+(L+)$



## Setting the switching threshold

Teach-in dynamic

## 1. Position label or substrate in the active area of the fork sensor



Press both the " + " and "-"
buttons together, hold $>1$ s and
than release the teach-in buttons.
The red LED flashes.
2. Move multiple labels through the fork sensor


Press "-" button, teach-in process is finished.

## Notes

Switching threshold adaptation:
Only, the first teach-in procedure after switching on is permanently stored. Teach-in can be repeated cyclically. Switching output also during teach-in active.

+ Once teach-in process is complete, the switching - - threshold can be adjusted at any time using the "+" or "-" button. To make minor adjustments, press the "+" or "-" button once.
To configure settings quickly, keep the " + " or "-" button pressed for longer.
$\pm \frac{3}{3 \mathrm{~s}}$
Press both the "+" and "-" buttons together (3 seconds) to lock the device and prevent unintentional actuation.
$\pm{ }_{6 s}^{L / D}$ Press both the "+" and "-" buttons together (6 seconds) to define the switching function (light/dark switching). Standard setting: $\mathrm{Q}=$ light switching.
Teach-in (static): Setting the switching threshold without movements of label, cf. operating instruction.


## Recommended accessories

## Plug connectors and cables

Connecting cables with female connector
M8, 4-pin, PVC, chemical resistant
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Figure } & \text { Connection type head A } & \text { Connection type head B } & \text { Connecting cable } & \text { Type } \\ \hline & \begin{array}{c}\text { Female connector, M8, }\end{array} & \text { Cable, open conductor } \\ \text { heads }\end{array}\right)$

[^35]
## WFNEXT - IT'S NEXT FOR HIGH-SPEED APPLICATIONS



## Product description

The WFnext line is ideal for high-speed, accurate label detection. It includes more than 40 fork sensors with a large selection of fork widths and depths to fit any application, such as detecting labels, holes or double sheets. Since the sender and receiver are in one housing, adjustment is not necessary. This easy-to-use sensor line includes fork widths

## At a glance

- Infrared light source
- Simple and accurate adjustment via teach-in or manually via " + "/"-" buttons
- Fast response time (max. $100 \mu \mathrm{~s}$ )


## Your benefits

- Fast response time and fine resolution ensure reliable detection even at high speeds
- Infrared light source provides excellent ambient light immunity
- User friendly setting via teach-in or " + "/"-" button
between 2 mm and 120 mm with fork depths of $40 \mathrm{~mm}, 60 \mathrm{~mm}$ and 95 mm . Its fast response time and fine resolution make it possible to detect small and flat objects moving at high speeds. On multiple installations, WFnext sensors can be installed adjacent to one another with no cross talk.
- PNP and NPN switching output
- Light/dark switching function
- 21 different models with different fork widths and depths
- Rugged, IP 65 aluminum housing
- A wide range of different fork sizes enables flexible installation
- The aluminum housing meets all requirements for use in harsh industrial conditions

[^36]

## Detailed technical data

## Features

| Functional principle | Optical detection principle |
| :--- | :--- |
| Housing design (light emission) | Fork shaped |
| Fork width | $2 \mathrm{~mm} \ldots 120 \mathrm{~mm}$ (depending on type) |
| Fork depth | $42 \mathrm{~mm} \ldots 95 \mathrm{~mm}$ (depending on type) |
| Minimum detectable object (MDO) | 0.2 mm |
| Label detection | $\boldsymbol{\sim} /$ - (depending on type) |
| Light source | LED |
| Type of light | Infrared light |
| Adjustment | Manual ("+"/"-" button) / Teach-in (depending on type) |
| Output function | Light/darkswitching, selectable via button |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | < 10 \% |
| Power consumption ${ }^{3)}$ | 40 mA |
| Switching frequency ${ }^{4)}$ | 10 kHz |
| Response time ${ }^{5}$ | $100 \mu \mathrm{~s}$ |
| Stability of response time | $\pm 20 \mu \mathrm{~s}$ |
| Switching output | PNP: HIGH $=\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} /$ LOW approx. 0 V NPN: HIGH = approx. $\mathrm{V}_{\mathrm{s}} /$ LOW $\leq 2 \mathrm{~V}$ |
| Output type | PNP/NPN |
| Output current $\mathrm{I}_{\text {max }}$. | 100 mA |
| Initialization time | 100 ms |
| Connection type | Connector M8, 4-pin |
| Ambient light safety | Sunlight: $\leq 10,000 \mathrm{klx}$ |
| Protection class ${ }^{6)}$ | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 65 |
| Weight ${ }^{7}$ | Approx. 36 g... 160 g |
| Housing material | Metal, aluminum |

${ }^{1)}$ Limit values, reverse-polarity protected, operation in short-circuit protected network: max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4)}$ With light/dark ratio 1:1.
${ }^{5)}$ Signal transit time with resistive load.
${ }^{6}$ Reference voltage DC 50 V .
${ }^{7}$ ) Depending on fork width.

## Ambient data

| Ambient operating temperature ${ }^{1)}$ | $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ |
| Shock load | According to EN $60068-2-27$ |
| UL File No. | NRKH.E191603 |

[^37]
## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/WF
WF2

- Fork width: 2 mm

| MDO ${ }^{1)}$ | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 mm | PNP/NPN | Manual ("+"/"-" button) | 42 mm | WF2-40B410 | 6028428 |
|  |  |  | 59 mm | WF2-60B410 | 6028436 |
|  |  |  | 95 mm | WF2-95B410 | 6028443 |
|  |  | Teach-in | 42 mm | WF2-40B416 | 6028450 |
|  |  |  | 59 mm | WF2-60B416 | 6028457 |
|  |  |  | 95 mm | WF2-95B416 | 6028464 |

${ }^{1)}$ Minimum detectable object.

## WF5

- Fork width: 5 mm

| MDO ${ }^{1)}$ | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 mm | PNP/NPN | Manual ("+"/"-" button) | 42 mm | WF5-40B410 | 6028429 |
|  |  |  | 59 mm | WF5-60B410 | 6028437 |
|  |  |  | 95 mm | WF5-95B410 | 6028444 |
|  |  | Teach-in | 42 mm | WF5-40B416 | 6028451 |
|  |  |  | 59 mm | WF5-60B416 | 6028458 |
|  |  |  | 95 mm | WF5-95B416 | 6028465 |

${ }^{1)}$ Minimum detectable object.

## WF15

- Fork width: 15 mm

| MDO ${ }^{\text {1) }}$ | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 mm | PNP/NPN | Manual ("+"/"-" button) | 42 mm | WF15-40B410 | 6028430 |
|  |  |  | 59 mm | WF15-60B410 | 6028438 |
|  |  |  | 95 mm | WF15-95B410 | 6028445 |
|  |  | Teach-in | 42 mm | WF15-40B416 | 6028452 |
|  |  |  | 59 mm | WF15-60B416 | 6028459 |
|  |  |  | 95 mm | WF15-95B416 | 6028466 |

${ }^{1)}$ Minimum detectable object.

## WF30

- Fork width: 30 mm

| MDO ${ }^{1)}$ | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 mm | PNP/NPN | Manual ("+"/"-" button) | 42 mm | WF30-40B410 | 6028431 |
|  |  |  | 59 mm | WF30-60B410 | 6028439 |
|  |  |  | 95 mm | WF30-95B410 | 6028446 |
|  |  | Teach-in | 42 mm | WF30-40B416 | 6028453 |
|  |  |  | 59 mm | WF30-60B416 | 6028460 |
|  |  |  | 95 mm | WF30-95B416 | 6028467 |

[^38]WF50

- Fork width: 50 mm

| MDO ${ }^{1)}$ | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 mm | PNP/NPN | Manual ("+"/"-" button) | 42 mm | WF50-40B410 | 6028432 |
|  |  |  | 59 mm | WF50-60B410 | 6028440 |
|  |  |  | 95 mm | WF50-95B410 | 6028447 |
|  |  | Teach-in | 42 mm | WF50-40B416 | 6028454 |
|  |  |  | 59 mm | WF50-60B416 | 6028461 |
|  |  |  | 95 mm | WF50-95B416 | 6028468 |

${ }^{1)}$ Minimum detectable object.

## WF80

- Fork width: 80 mm

| MDO ${ }^{1)}$ | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 mm | PNP/NPN | Manual ("+"/"-" button) | 42 mm | WF80-40B410 | 6028433 |
|  |  |  | 59 mm | WF80-60B410 | 6028441 |
|  |  |  | 95 mm | WF80-95B410 | 6028448 |
|  |  | Teach-in | 42 mm | WF80-40B416 | 6028455 |
|  |  |  | 59 mm | WF80-60B416 | 6028462 |
|  |  |  | 95 mm | WF80-95B416 | 6028469 |

${ }^{1)}$ Minimum detectable object.

WF120

- Fork width: 120 mm

| MDO ${ }^{\text {1) }}$ | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.2 mm | PNP/NPN | Manual ("+"/"-" button) | 42 mm | WF120-40B410 | 6028435 |
|  |  |  | 59 mm | WF120-60B410 | 6028442 |
|  |  |  | 95 mm | WF120-95B410 | 6028449 |
|  |  | Teach-in | 42 mm | WF120-40B416 | 6028456 |
|  |  |  | 59 mm | WF120-60B416 | 6028463 |
|  |  |  | 95 mm | WF120-95B416 | 6028470 |

[^39]Dimensional drawing (Dimensions in mm (inch))

(1) Optical axis
(2) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$ (3) WF50/80/120 only

## Adjustments

Teach-in

(1) Function signal indicator (yellow), switching output
(2) Function indicator (red)
(3) "+"/"-" buttons and function button

## Connection diagram

Cd-086
$-\operatorname{Cr}_{i} \frac{1}{1}+(L+)$
$\rightarrow \begin{gathered}\text { whti! } \frac{2}{2} Q_{\text {NPN }} \\ \text { blu! } \frac{3}{-(M)}\end{gathered}$


## Setting the switching threshold

+/-- button

## 1. No object in the beam path

## 2. Object in the beam path



Yellow function indicator goes out.
If necessary, reduce sensitivity using the "-" button.

Teach-in
The switching threshold is set automatically. Fine adjustment is possible using the " + "/"-" buttons.

## 1. No object or substrate in the beam path



Press the " + " and " - " buttons
together and hold for 1 second.
The red function indicator flashes slowly.

## 2. Object or label in the beam path



Press the "-" button for 1 second.
Red function indicator goes out.

## Notes

Material speed $=0$ (machine at a standstill).
Once teach-in process is complete, the switching threshold can be adjusted at any time using the " + " or "-" button. To make minor adjustments, press the " + " or "-" button once. To configure settings quickly, keep the " + " or " - " button pressed for longer.
$\pm \frac{3}{3 \mathrm{~s}}$
Press both the " + " and "-" buttons together ( 3 seconds) to lock the device and prevent unintentional actuation.
$\pm \frac{\mathrm{L} / \mathrm{D}}{6 \mathrm{~s}}$
Press both the " + " and "-" buttons together (6 seconds) to define the switching function (light/dark switching). Standard setting: $\bar{Q}=$ light switching.

## Recommended accessories

## Plug connectors and cables

Connecting cables with female connector
M8, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Female connector, M8, 4-pin, straight, unshielded | Female connector, M8, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-G02M | 6009870 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | D0L-0804-G05M | 6009872 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-G10M | 6010754 |
|  | Female connector, M8, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-W02M | 6009871 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-W05M | 6009873 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | D0L-0804-W10M | 6010755 |

[^40]
## GET PRECISE DETECTION OF SMALL TARGETS WITH WFL


Additional information
Detailed technical data . . . . . . . . F-183
Ordering information . . . . . . . . . . F-184
Dimensional drawing . . . . . . . . . . F-185
Adjustments . . . . . . . . . . . . . . . F-186
Connection diagram. . . . . . . . . F-186
Setting the switching threshold . F-186
Recommended accessories . . . . F-187

## Product description

The WFL laser fork sensor family is characterized by fast response times and a highly focused visible laser beam. The sender and receiver, which operate using the through-beam principle, are combined in a single housing. This enables maximum positioning accuracy. Due to

At a glance

- Very precise laser beam (Class 1 laser)
- Simple and accurate adjustment via teach-in
- Fast response time (max. $100 \mu \mathrm{~s}$ )
- Minimum detectable object size of 0.05 mm


## Your benefits

- A highly precise laser beam ensures consistent measurement accuracy along the entire measuring range and reliable detection of the smallest objects
- A visible laser light spot enables easy alignment and fast adjustment
extremely fast response times and high resolutions, these sensors are ideal for detecting very small objects, such as needles, and transparent objects. With more than 20 sensors available, this line of fork sensors can be used for a wide variety of applications.
- PNP and NPN switching output
- Light/dark switching function
- 21 different models with different fork widths and depths
- Rugged, IP 65 aluminum housing
- Reliable and simple setting via teachin ensures high process reliability
- A wide range of different fork sizes increases installation flexibility
- The aluminum housing meets all requirements for use in harsh industrial conditions

[^41]

## Detailed technical data

## Features

| Functional principle | Optical detection principle |
| :--- | :--- |
| Housing design (light emission) | Fork shaped |
| Fork width | $2 \mathrm{~mm} \ldots 120 \mathrm{~mm}$ (depending on type) |
| Fork depth | $42 \mathrm{~mm} \ldots 95 \mathrm{~mm}$ (depending on type) |
| Minimum detectable object (MDO) | 0.05 mm |
| Light source | Laser |
| Type of light | Visible red light |
| Wave length | 670 nm |
| Laser class | I |
| Adjustment | Teach-in |
| Output function | Light/darkswitching, selectable via button |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | < 10 \% |
| Power consumption ${ }^{3)}$ | 40 mA |
| Switching frequency ${ }^{4}$ | 10 kHz |
| Response time ${ }^{5}$ | $100 \mu \mathrm{~s}$ |
| Stability of response time | $\pm 20 \mu \mathrm{~s}$ |
| Switching output | $\begin{aligned} & \text { PNP: HIGH }=\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} / \text { LOW approx. } \mathrm{OV} \\ & \text { NPN: } \text { HIGH }=\text { approx. } \mathrm{V}_{\mathrm{S}} / \text { LOW } \leq 2 \mathrm{~V} \end{aligned}$ |
| Output type | PNP/NPN |
| Output current $\mathrm{I}_{\text {max }}$ | 100 mA |
| Initialization time | 100 ms |
| Connection type | Connector M8, 4-pin |
| Ambient light safety | Sunlight: $510,000 \mathrm{klx}$ |
| Protection class ${ }^{6)}$ | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 65 |
| Weight ${ }^{7}$ | Approx. $36 \mathrm{~g} . . .160 \mathrm{~g}$ |
| Housing material | Metal, aluminum |

${ }^{1)}$ Limit values, reverse-polarity protected, operation in short-circuit protected network: max. 8 A .
${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
4) With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6}$ ) Reference voltage DC 50 V .
${ }^{7}$ ) Depending on fork width.

## Ambient data

| Ambient operating temperature ${ }^{1)}$ | $-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ |
| Shock load | According to EN 60068-2-27 |
| UL File No. | NRKH.E191603 \& NRKH7.E191603, CDRH-conform |

${ }^{1)}$ Do not bend below $0^{\circ} \mathrm{C}$.

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/WFL
Teach-in
WFL2

- Fork width: 2 mm

| MDO | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 mm | PNP/NPN | Teach-in | 42 mm | WFL2-40B416 | 6036821 |
|  |  |  | 59 mm | WFL2-60B416 | 6036828 |
|  |  |  | 95 mm | WFL2-95B416 | 6036835 |

WFL5

- Fork width: 5 mm

| MDO | Switching output | Adjustment | Fork depth | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 mm |  |  | 42 mm | WFL5-40B416 |
|  | PNP/NPN | Teach-in | 59 mm | WF036822 |

WFL15

- Fork width: 15 mm

| MDO | Switching output | Adjustment | Fork depth | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 mm |  |  | 42 mm | Part no. |  |
|  | PNP/NPN | Teach-in | 59 mm | WFL15-40B416 |  |
|  |  |  | 95 mm | WFL15-60B416 | 6036823 |

WFL30

- Fork width: 30 mm

| MDO | Switching output | Adjustment | Fork depth | Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 mm |  |  | 42 mm | Part no. |
|  | PNP/NPN | Teach-in | 59 mm | WFL30-40B416 |
|  |  |  | WFL30-60B416 | 6036824 |

WFL50

- Fork width: 50 mm

| MDO | Switching output | Adjustment | Fork depth | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 mm |  |  | 42 mm | WFL50-40B416 | 6036825 |
|  | PNP/NPN | Teach-in | 59 mm | WFL50-60B416 | 6036832 |

WFL80

- Fork width: 80 mm

| MDO | Switching output | Adjustment | Fork depth | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 mm | PNP/NPN | Teach-in | 42 mm | WFL80-40B416 | 6036826 |
|  |  |  | 59 mm | WFL80-60B416 | 6036833 |
|  |  |  | 95 mm | WFL80-95B416 | 6036840 |

WFL120

- Fork width: 120 mm

| MDO | Switching output | Adjustment | Fork depth | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.05 mm |  |  | 42 mm | WFL120-40B416 | 6036827 |
|  | PNP/NPN | Teach-in | 59 mm | WFL120-60B416 | 6036834 |
|  |  |  | 95 mm | WFL120-95B416 | 6036841 |

Dimensional drawing (Dimensions in mm (inch))


[^42]
## Dimensions in mm (inch)

|  | $\mathbf{A}$ <br> Fork width | $\mathbf{B}$ <br> Fork depth | $\mathbf{C}$ | $\mathbf{C 1}$ |
| :--- | :---: | :---: | :---: | :---: |
| WFL2 | 2 | $42 / 59 / 95$ | 14 | 13.5 |
|  | $(0.08)$ | $(1.65 / 2.32 / 3.74)$ | $(0.55)$ | $(0.53)$ |
| WFL5 | 5 | $42 / 59 / 95$ | 14 | 15 |
|  | $(0.20)$ | $(1.65 / 2.32 / 3.74)$ | $(0.55)$ | $(0.59)$ |
| WFL15 | 15 | $42 / 59 / 95$ | 27 | 13.5 |
|  | $(0.59)$ | $(1.65 / 2.32 / 3.74)$ | $(1.06)$ | $(0.53)$ |
| WFL30 | 30 | $42 / 59 / 95$ | 42 | 13.5 |
|  | $(1.18)$ | $(1.65 / 2.32 / 3.74)$ | $(1.65)$ | $(0.53)$ |
| WFL50 | 50 | $42 / 59 / 95$ | 51 | 24.5 |
|  | $(1.97)$ | $(1.65 / 2.32 / 3.74)$ | $(2.01)$ | $(0.96)$ |
| WFL80 | 80 | $42 / 59 / 95$ | 81 | 24.5 |
|  | $(3.15)$ | $(1.65 / 2.32 / 3.74)$ | $(3.19)$ | $(0.96)$ |
| WFL120 | 120 | $42 / 59 / 95$ | 121 | 24.5 |
|  | $(4.72)$ | $(1.65 / 2.32 / 3.74)$ | $(4.76)$ | $(0.96)$ |

## Adjustments

(1)

(1) Function signal indicator (yellow), switching output
(2) Function indicator (red)
(3) "+"/"-" buttons and function button

Connection diagram
Cd-086

$\rightarrow \frac{\text { whti } 2}{2} Q_{\text {NPN }}$
$\rightarrow \underset{-\quad \text { blki }}{\substack{4}} Q_{\text {PNP }}$

## Setting the switching threshold

Teach-in
The switching threshold is set automatically. Fine adjustment is possible using the "+"/"-" buttons.

## 1. No object or substrate in the beam path



Press the " + " and " - " buttons together and hold for 1 second. The red function indicator flashes slowly.

## 2. Object or label in the beam path



Press the "-" button for
1 second.
Red function indicator goes out.

## Notes

Material speed $=0$ (machine at a standstill).

+ Once teach-in process is complete, the switching threshold can be adjusted at any time usingthe " + " or "-" button. To make minor adjustments, press the " + " or "-" button once.
To configure settings quickly, keep the " + " or " - " button pressed for longer.
$\pm \frac{8}{3 \mathrm{~s}}$
Press both the "+" and "-" buttons together (3 seconds) to lock the device and prevent unintentional actuation.
$\pm \frac{L}{6 s}$
Press both the "+" and "-" buttons together (6 seconds) to define the switching function (light/dark switching). Standard setting: $\overline{\mathrm{Q}}=$ light switching.

Recommended accessories
Plug connectors and cables
Connecting cables with female connector
M8, 4-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part $n 0$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-G02M | 6009870 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | D0L-0804-G05M | 6009872 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-G10M | 6010754 |
|  | Female connector, M8, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-W02M | 6009871 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-W05M | 6009873 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-W10M | 6010755 |

$\rightarrow$ For additional accessories, please see page K-240

## WFM - CONNECT AND GET STARTED



## Product description

WFM fork sensors can be integrated quickly due to Plug and Play installation - no time-consuming alignment is necessary. A 360-degree output indicator makes it easy to see the switching status during the operation. Since the sender and receiver of the sensor are integrated within the same aluminum housing, aligning the sensors is not necessary and detection tasks can be

## At a glance

- Highly visible red emitted light
- No setup, out-of-the-box operation
- $360^{\circ}$ output indicator


## Your benefits

- Fixed housings guarantee a high level of operational safety with simple commissioning
- A visible red light enables easy alignment and fast adjustment
- The 360-degree yellow output indicator makes continual process control possible
prepared and solved even faster. The WFM line includes five different types with fork widths from 30 to 180 mm and fork depths from 40 to 120 mm , providing greater application flexibility. This generation of SICK fork sensors is suited for a variety of applications, such as detecting parts in production processes or checking presence when filling bottles.
- 5 fork sizes: maximum depth 120 mm , maximum width 180 mm
- Rugged, IP 67 aluminum housing
- A wide range of different fork sizes increases installation flexibility
- The aluminum housing meets all requirements for use in harsh industrial conditions

[^43]

## Detailed technical data

## Features

| Functional principle | Optical detection principle |
| :--- | :--- |
| Housing design (light emission) | Fork shaped |
| Fork width | $30 \mathrm{~mm} \ldots 180 \mathrm{~mm}$ (depending on type) |
| Fork depth | $42 \mathrm{~mm} \ldots 124 \mathrm{~mm}$ (depending on type) |
| Minimum detectable object (MDO) | $0.8 \mathrm{~mm} / 1 \mathrm{~mm}$ (depending on type) |
| Light source | LED |
| Type of light | Visible red light |
| Adjustment | None |
| Output function | Dark switching / Light switching (depending on type) |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | < 10 \% |
| Power consumption ${ }^{3}$ | $<20 \mathrm{~mA}$ |
| Switching frequency ${ }^{4)}$ | 4 kHz |
| Response time ${ }^{5}$ | $125 \mu \mathrm{~s}$ |
| Stability of response time | $\pm 15 \mu \mathrm{~s}$ |
| Switching output | PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{s}}-\leq 1.5 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$ <br> NPN: HIGH = approx. $\mathrm{V}_{\mathrm{s}} / \mathrm{LOW} \leq 1.5 \mathrm{~V}$ |
| Output type | PNP / NPN (depending on type) |
| Output current $\mathrm{I}_{\text {max. }}$ | 100 mA |
| Initialization time | 140 ms |
| Connection type | Connector M8, 3-pin / Cable, 3-wire, 2 m (depending on type) |
| Ambient light safety | Sunlight: $\leq 10,000 \mathrm{klx}$ |
| Protection class ${ }^{6)}$ | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 67 |
| Weight ${ }^{7}$ | Approx. 80 g ... 190 g |
| Housing material | Metal, Aluminum |

${ }^{1)}$ Limit values, reverse-polarity protected, operation in short-circuit protected network: max. 8 A .
${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4)}$ With light/dark ratio 1:1.
${ }^{5}$ ) Signal transit time with resistive load.
${ }^{6)}$ Reference voltage DC 50 V .
${ }^{7}$ ) Depending on fork width.

## Ambient data

| Ambient operating temperature ${ }^{1)}$ | $-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ |
| Shock load | According to EN 60068-2-27 |
| UL File No. | NRKH.E191603 \& NRKH7.E191603 |

[^44]
## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/WFM
WFM30-40

- Fork width: 30 mm
- Fork depth: 42 mm

| MDO ${ }^{\text {1) }}$ | Connection type | Switching output | Output function | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.8 mm | Connector M8, 3-pin | PNP | Dark switching | WFM30-40P321 | 6037819 |
|  |  |  | Light switching | WFM30-40P311 | 6037820 |
|  |  | NPN | Dark switching | WFM30-40N321 | 6037821 |
|  |  |  | Light switching | WFM30-40N311 | 6037822 |
|  | Cable, 3-wire 2 m | PNP | Dark switching | WFM30-40P121 | 6037823 |

${ }^{1)}$ Minimum detectable object.

## WFM50-60

- Fork width: 50 mm
- Fork depth: 60 mm

| MDO $^{\text {1) }}$ | Connection type | Switching output | Output function | Type |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dark switching | WFM50-60P321 | 6037824 |
| 0.8 mm | Connector M8, 3-pin | PNP | Light switching | WFM50-60P311 | 6037825 |
|  |  | NPN | Dark switching | WFM50-60N321 | 6037826 |

${ }^{1)}$ Minimum detectable object.

WFM80-60

- Fork width: 80 mm
- Fork depth: 60 mm

| MDO ${ }^{\text {1) }}$ | Connection type | Switching output | Output function | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.8 mm | Connector M8, 3-pin | PNP | Dark switching | WFM80-60P321 | 6037828 |
|  |  |  | Light switching | WFM80-60P311 | 6037829 |
|  |  | NPN | Dark switching | WFM80-60N321 | 6037830 |
|  |  |  | Light switching | WFM80-60N311 | 6037831 |

${ }^{1)}$ Minimum detectable object.

WFM120-120

- Fork width: 120 mm
- Fork depth: 124 mm

| MDO ${ }^{\text {1) }}$ | Connection type | Switching output | Output function | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dark switching | WFM120-120P321 | 6037832 |
| 0.8 mm | Connector M8, 3-pin |  | Light switching | WFM120-120P311 | 6037833 |
|  |  | NPN | Dark switching | WFM120-120N321 | 6037834 |

[^45]WFM180-120

- Fork width: 180 mm
- Fork depth: 124 mm

| MDO ${ }^{1)}$ | Connection type | Switching output | Output function | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 mm | Connector M8, 3-pin | PNP | Dark switching | WFM180-120P321 | 6037836 |
|  |  |  | Light switching | WFM180-120P311 | 6037837 |
|  |  | NPN | Dark switching | WFM180-120N321 | 6037838 |
|  |  |  | Light switching | WFM180-120N311 | 6037839 |

${ }^{1)}$ Minimum detectable object.

Dimensional drawing (Dimensions in mm (inch))


## Dimensions in mm (inch)

|  | $\mathbf{A}$ <br> Fork width | $\mathbf{B}$ <br> Fork depth | $\mathbf{C}$ | $\mathbf{C 1}$ |
| :--- | :---: | :---: | :---: | :---: |
| WFM30 | 30 | 42 | 30 | 6.5 |
|  | $(1.18)$ | $(1.65)$ | $(1.18)$ | $(0.26)$ |
| WFM50 | 50 | 60 | 40 | 6.5 |
|  | $(1.97)$ | $(2.36)$ | $(1.57)$ | $(0.26)$ |
| WFM80 | 80 | 60 | 70 | 6.5 |
|  | $(3.15)$ | $(2.36)$ | $(2.76)$ | $(0.26)$ |
| WFM120 | 120 | 124.3 | 100 | 17 |
|  | $(4.72)$ | $(4.89)$ | $(3.94)$ | $(0.67)$ |
| WFM180 | 180 | 124.3 | 152 | 22 |
|  | $(7.09)$ | $(4.89)$ | $(5.98)$ | $(0.87)$ |
|  | $\mathbf{C 2}$ | $\mathbf{C 3}$ | $\mathbf{a}$ | $\mathbf{b}$ |
| WFM30 | - | - | 54 | 67.7 |
|  | $(-)$ | $(-)$ | $(2.13)$ | $(2.67)$ |
| WFM50 | 8 | 19.5 | 74 | 85.7 |
|  | $(0.31)$ | $(0.77)$ | $(2.91)$ | $(3.37)$ |
| WFM80 | 8 | 19.5 | 104 | 85.7 |
|  | $(0.31)$ | $(0.77)$ | $(4.09)$ | $(3.37)$ |
| WFM120 | 10 | 17 | 144 | 150.2 |
|  | $(0.39)$ | $(0.67)$ | $(5.67)$ | $(5.91)$ |
| WFM180 | 8 | 22 | 204 | 150.2 |
|  | $(0.31)$ | $(0.87)$ | $(8.03)$ | $(5.91)$ |

(1) Optical axis
(2) Mounting hole, $\varnothing 4.3 \mathrm{~mm}$
(3) WFM50/80/120/180
(4) Transmitted light (red)
(5) Function signal indicator (yellow), switching output

Connection diagram
Cd-045


## Recommended accessories

## Plug connectors and cables

Connecting cables with female connector
M8, 3-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 3-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 3$-wire | DOL-0803-G02M | 6010785 |
|  |  |  | $5 \mathrm{~m}, 3$-wire | D0L-0803-G05M | 6022009 |
|  |  |  | $10 \mathrm{~m}, 3$-wire | DOL-0803-G10M | 6022011 |
|  | Female connector, M8, 3-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 3$-wire | DOL-0803-W02M | 6008489 |
|  |  |  | 5 m , 3-wire | DOL-0803-W05M | 6022010 |
|  |  |  | $10 \mathrm{~m}, 3$-wire | D0L-0803-W10M | 6022012 |

$\rightarrow$ For additional accessories, please see page K-240

## REGISTER SENSORS



Register control does the work in tough print mark applications

The register sensor line complements our wide range of contrast sensors. As specialists in the register control of printing presses they offer an optimal solution to detect marks in tough print conditions with extremely low contrast, complex colorful printouts or at very high speeds. Our range of register
sensors also includes an ATEX certified fiber-optic product, ensuring safe solutions in hazardous areas (e.g. when using solvent based ink).

## Your benefits

- Solution for explosive gas areas (ATEX certificate)
- High precision to enhance print quality
- Reliable print quality systems at high speeds
- Cost-saving potential with less material waste and less production conversion time

|  | General information | G-196 |
| :---: | :---: | :---: |
|  | Product family overview | . G-199 |
| $15$ | RS10. | .G-200 |
|  | Adjustable individual thresholds |  |
| $\cdots$ | RS25. . | .G-206 |
|  | For best performance even in ha |  |

## IF IT DOESN'T FIT, WE'LL MAKE IT FIT

As in every industry, the printing industry needs an expert with a sharp eye for results. During continuous operations - at very high speeds - SICK register sensors make sure that nothing unsuitable gets through.

Color accuracy is the most important factor in achieving top results in printed products. To ensure this, the intake of the material to be printed must be precisely regulated. Activated by the machine's register control, the register sensors check every single printout as well as the distance and width of printed control
marks. If the control mark is not exactly where it should be, the entire print result will be considered unsuitable. The machine's register control uses the position deviations detected by the register sensors to correct the printout. SICK register sensors deal with all of this what can we say, they're control freaks!


## EVERYTHING WASTED? NOT WITH US.

Register sensors detect printed control marks at full production speed. If a sensor detects deviations, this information is used to automatically correct printouts, for example. This is known as automatic register control.


## Function of register control

Register controls ensure an accurate infeed of material from one printout to the next for all types of printing press. To obtain a sharp print image, the individual colors must be printed accurately over matching layers. In each color run, a control mark is printed that is detected by the quick and precise register sensors. They measure both the distance between one mark and the next and the width of the marks.

The distance between the marks indicates whether the length of the print is correct (longitudinal register). The width of the marks is required to regulate the side register. The longitudinal register can be modified via a positioning roller between the printouts, which alters the length of the paper flow to the next printout. To adjust the side register, the print roller is moved to the right or left. The register sensors control all of this with lightning speed, preventing wastage.

Detecting an incorrect longitudinal register


Configuring the printing machine via a positioning roller


Magenta printing unit
Cyan printing unit

Detecting an incorrect side register

## $\square$ $\square$「汇

Configuring the printing machine via a print roller


## INCREASING PROCESS SPEED AND EFFICIENCY

SICK register sensors reduce wastage and thus increase productivity and efficiency in the printing business. They even reduce costs during printing plate mounting and commissioning.

RS10


The RS10 register sensor is perfect for detecting minor contrasts and lots of different colors. With an integrated register control system and configurable individual switching threshold, a sensor can detect up to 18 marks.
Because it is mounted with a simple screw, the RS10 is ready to use in just a short time.

RS25


The RS25 register sensor is impressively simple and quick to use and features automatic teach-in mechanisms. This reduces machine setup and conversion times. It consists of a sensor head, fibers, and evaluation unit. Using an RGB light ensures excellent reading quality.
The RS25 register sensor is ATEX-certified and ideal for use in areas that contain explosive gases, e.g. where solvent-based colors are used. Communication via Ethernet POWERLINK enables the sensor to be easily incorporated into the machine operating concept.
Ex) POWERLINK

## PRODUCT FAMILY OVERVIEW



## ADJUSTABLE INDIVIDUAL THRESHOLDS



## Product description

The RS10 is ideal for detecting print marks with low contrast or handling register marks with many different colors due to its individual threshold adjustment feature. Single screw mounting

At a glance

- The register is controlled with individual thresholds
- Unique housing: one screw mounting
- Tight dual-sensor mounting ability


## Your benefits

- Better performance in low contrast applications or with many color marks (>8)
- Unique housing allows for quick mounting and adjustment
makes it easy to integrate and adjust in the machine. The round-shaped, white LED improves accuracy at high speeds. Up to 18 marks can be handled by the embedded register control system.
- Detects 1-18 marks of different colors
- Easy teach-in via button
- Dual sensors detect a double columns of marks
- Fast teach procedure for less downtime on the production line



## Detailed technical data

## Features

| Dimensions (W x H x D) | $15 \mathrm{~mm} \times 62 \mathrm{~mm} \times 60 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance | 13 mm |
| Housing design (light emission) | Rectangular |
| Sensing distance tolerance | $\pm 1 \mathrm{~mm}$ |
| Light source ${ }^{\text {1) }}$ | LED |
| Type of light | Visible white light |
| Wave length | $450 \mathrm{~nm} \ldots 650 \mathrm{~nm}$ |

${ }^{1)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25{ }^{\circ} \mathrm{C}$.

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | 10 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3}$ | < 100 mA |
| Response time ${ }^{4)}$ | $\leq 20 \mu \mathrm{~s}$ |
| Jitter | $\leq 10 \mu \mathrm{~s}$ |
| Output type | PNP/NPN, push-pull |
| Output current $\mathrm{I}_{\text {max }}$. | < 100 mA |
| Input, teach-in (ET) | Run: U < 2 V <br> Teach: $U=10 \mathrm{~V} \ldots<U_{V}$ |
| Connection type | Male connector M12, 8-pin |
| Protection class ${ }^{5)}$ | II |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Interference suppression, Outputs overcurrent and short-circuit protected |
| Enclosure rating | IP 67 |
| Weight | 400 g |
| Housing material | Metal, aluminum (anodised) |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2}$ ) May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4}$ ) Signal transit time with resistive load.
${ }^{5)}$ Reference voltage DC 32 V .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/RS10

| Sensing distance | Response time ${ }^{1)}$ | Output type | Type |  |
| :---: | :---: | :---: | :---: | :---: |
| 13 mm | $\leq 20 \mu \mathrm{~s}$ | PNP/NPN, push-pull | RS10-M111 | 1060116 |

[^46]Dimensional drawing (Dimensions in mm (inch))


Connection diagram
Cd-316


$\ldots$ pnk; $6 \mathrm{NC}^{1)}$
$\rightarrow \underset{-\quad \text { yel } i}{ } 4 \mathrm{NC}^{1)}$
(1) Not connected. Leave open, do not wire to ground.

Assembly note


Functional principle


Flow diagram



## Recommended accessories

## Plug connectors and cables

Connecting cables with female connector
M12, 8-pin, PUR, halogen-free

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 8-pin, straight, shielded | Cable, open conductor <br> heads | $2 \mathrm{~m}, 8$-wire | DOL-1208-G02MAH1 | 6032448 |
|  | Female connector, M12, <br> 8-pin, angled, shielded | Cable, open conductor <br> heads | $2 \mathrm{~m}, 8$-wire | DOL-1208- <br> WO2MAS01 | 6029224 |

[^47]
## FOR BEST PERFORMANCE EVEN IN HAZARDOUS AREAS!



## Product description

The RS25 can be used in various print mark processes and the fiber-optic ATEX certified version is ideal in explosive gas environments. The sensor has extremely low jitter in combination with fast

## At a glance

- PLC embedded register control
- Multi LED (RGB)
- Fast communication via Ethernet Powerlink
- Very high repeatability ( $\leq 40 \mu \mathrm{~m}$ )


## Your benefits

- High precision to enhance print quality
- Sensor for explosive gas areas ATEX certified
communication via EthernetPowerlink, resulting in a very high repeatability. The multicolored LED is adapted to each mark to get the best possible contrast.
- Detects up to 20 marks of different colors
- Reading window for improved reliability
- Flexible solution via the PLC embedded register control unit
- Cost-saving potential with less material waste and less production conversion time


## Detailed technical data

## Features

|  | Evaluation unit | Optical sensor head |
| :--- | :--- | :--- |
| Dimensions (W x H x D) | $100 \mathrm{~mm} \times 47 \mathrm{~mm} \times 200 \mathrm{~mm}$ | $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 40 \mathrm{~mm}$ |
| Sensing distance | 10 mm | - |
| Housing design (light emission) | Rectangular |  |
| Sensing distance tolerance | $\pm 1 \mathrm{~mm}$ |  |
| Light source | LED | - |
| Type of light | Visible red light, visible green light, visible blue light |  |
| Maximum No. of marks in register | 20 | - |
| Start code | Configurable | - |
| Data interface | Ethernet POWERLINK |  |

## Mechanics/electronics

|  | Evaluation unit | Optical sensor head |
| :---: | :---: | :---: |
| Supply voltage ${ }^{1)}$ | 12 V DC ... 30 V DC | - |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |  |
| Power consumption ${ }^{3)}$ | < 250 mA | - |
| Accuracy | $40 \mu \mathrm{~m}$ | - |
| Connection type | Connector M12, 4-pin | - |
| Protection class ${ }^{4)}$ | III | - |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Interference suppression, Outputs overcurrent and short-circuit protected | - |
| Housing | - | Quadratic |
| Window material | - | Glass |
| Fiber length | - | $3,200 \mathrm{~mm}$ |
| Diameter of fiber | - | 8 mm |
| Bending radius (static) | - | 40 mm |
| Bending radius (dynamic) | - | 80 mm |
| Fieldbus interface | Ethernet POWERLINK | - |
| Enclosure rating | IP 65 |  |
| Weight | 1,000 g | 450 g |
| ATEX approval | - / V (depending on type) | $\checkmark$ |
| ATEX marking | Ex II (2)G [Ex op is Gb] IIB | Ex II 2 G Ex op is IIB T4 Gb |
| Housing material | Metal, aluminum | Metal, aluminum alloy, sandblasted |

${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4}$ ) Reference voltage DC 50 V .

## Ambient data

|  | $\quad$ Evaluation unit | Optical sensor head |
| :--- | :--- | :--- |
| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |  |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ | - |
| Shock load | According to IEC 60068 |  |

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/RS25

| Sensing distance | ATEX marking | Type | Part no. |
| :---: | :---: | :---: | :---: |
| 10 mm | - | RS25-WF334000 | 1062005 |
|  | Ex II (2)G [Ex op is Gb] IIB | RS25-WL334000 | 1061571 |
| - | Ex II 2G Ex op is IIB T4 Gb | RS25-optical sensor head | - |

## Dimensional drawings (Dimensions in mm (inch))

Evaluation unit

(1) Connection optical sensor head receiver
(2) Connection optical sensor head sender
(3) Anschluss supply voltage
(6) Mounting hole
(9) LED function indicator (green) "Eth, Link and Act"
(10) LED function indicator (green) "Eth, Link and Act"
(11) LED function indicator (green/red) "S/E"
(12) LED function indicator (yellow) "MF"
(B) LED function indicator (green) "Power"

Optical sensor head

(1) Optical axis sender
(2) Optical axis receiver
(5) Mounting hole
(6) Sensing distance 10 mm

Connection diagram

Cd-317
Voltage supply


Ethernet POWERLINK


whtic 2 Tx+

M12 (D-coded)

M12 (A-coded)
(1) Not connected

Functional principle


Flow diagram
G

6. Perform a restart. This is done by switching the supply voltage off and then on again after 5 seconds.
The register sensor is ready to communicate with the control (PLC).

## Recommended accessories

## Plug connectors and cables

## Connecting cables with female connector

M12, 5-pin, PUR, halogen-free, Oil / grease resistant


Connection cables with male connector and male connector
M12, 4-pin, PUR, Ethernet

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male connector, M12, 4-pin, straight, D-coded, shielded | Male connector, RJ45, 8-pin, straight | $2 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G02ME | 6034414 |
|  |  |  | $5 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G05ME | 6035389 |
|  |  |  | $10 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G10ME | 6030928 |
|  |  |  | $20 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G20ME | 6036158 |
|  |  |  | 25 m, 4-wire, AWG26 | SSL-2J04-G25ME | 6033555 |

M12, 4-pin, PUR, halogen-free, EtherNet/IP

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $4{ }^{1}$ | Male connector, M12, 4-pin, straight, D-coded, shielded | Male connector, M12, 4-pin, straight, D-coded | $2 \mathrm{~m}, 4$-wire, CAT5, CAT5e | SSL-1204-G02ME90 | 6045222 |
|  |  |  | $5 \mathrm{~m}, 4$-wire, CAT5, CAT5e | SSL-1204-G05ME90 | 6045277 |
|  |  |  | $10 \mathrm{~m}, 4$-wire, CAT5, CAT5e | SSL-1204-G10ME90 | 6045279 |

[^48]
## ARRAY SENSORS



## Ax20 array sensors for edge and diameter detection solutions

Array sensors use closely spaced beams of light to detect even the slightest differences in gray scale between the target and the background within their field-of-view. They are ideal for edge and diameter detection as well as detecting widths and gaps. SICK's array sensors offer industry-leading reproducibility, in addition to compact, rugged metal housings for use in highly restricted or harsh environments.

## Your benefits

- Cost-effective solution to reliably determine edge position and width measurement
- Easy-to-integrate, compact housing can be mounted over the web so less downtime is required for maintenance
- No reflector is required, reducing maintenance and providing greater product reliability. Reduces downtime. Only array sensors available in diffuse mode, making them ideal for environments where dirt and dust can interfere with other types of solutions that require a reflector.
- High reproducibility of 0.03 mm and industry-leading resolution enable greater accuracy and quality control
- Highly visible white LED light spot ensures fast and accurate alignment, reducing time-consuming fine adjustment
- No teach, program or menu activities make setup virtually hassle free

General information ..... H-214
Product family overview ..... H-217Ax20H-218Ax20 array sensors for edge and diameter detection solutions


## FURTHER AHEAD, LINE FOR LINE

The SICK array sensor is the ideal solution for accurate web edge and line tracing. Be it positioning print marks, controlling web edges, or monitoring consistent diameters, the Ax20's measuring principle of operation makes it the perfect solution.

SICK array sensors are the first choice for precise detection and tracing of contrast variations. They work on the proximity principle and can detect even the smallest grayscale variations in the visible area. In the measurement
field of up to 30 mm , even minuscule changes in contrast are precisely detected, traced, and output via an analog value accurate up to $30 \mu \mathrm{~m}$.


## TYPICAL APPLICATIONS



## Your benefits

- Cost-effective solution for edge and diameter detection
- Resistant to environmental factors, e.g. dust by using proximity principle
- Less machine downtime
- Detection of many different materials, e.g. transparent foils
- Easy operation
- Visible light spot


## Edge detection and web edge tracing

The Ax20 traces the position of web edges and detects the lateral position of the paper or foil web.
Ax20 array sensors enable precise web edge control. They offer a high repeatability of $30 \mu \mathrm{~m}$ and can detect even the smallest grayscale variations in their visible area.

## Optical engagement

The AT20 array sensor registers the position of the sheet edge and thus regulates the sheet position.
It detects the position of a sheet edge and supplies an analog signal that is proportional to this position. This enables control of the sheet position and sheet travel with an accuracy of $30 \mu \mathrm{~m}$.

## Object positioning

The quick and precise detection of the leading edge of objects, e.g. circuit boards, enables reliable positioning and loading processes.
The AT20 proximity array sensor positions a sheet based on the printed mark or the print image. This procedure does not require a reflector. A further advantage of the proximity principle is that the sheets are punched precisely to match the image. This eliminates the tolerance to the edge of the sheet.

## TECHNOLOGY

## Precisely detect contrast changes

The Ax20 array sensor works according to the proximity principle. Within the measurement field of up to 30 mm , changes in contrast are precisely detected, traced, and output via an analog value accurate up to $30 \mu \mathrm{~m}$. With its extremely compact and sturdy metal housing, the sensor can be used in very tight or awkward spaces.

The benefits of the Ax20 at a glance


Which sensor for which contrast change
AT20 with Reflektor

$\geq 10 \%$

AL20 with Reflektor

$\geq 17 \%$

AT20 without Reflektor

$\geq 20 \%$

## PRODUCT FAMILY OVERVIEW



## AX20 ARRAY SENSORS FOR EDGE AND DIAMETER DETECTION SOLUTIONS



## Product description

Array sensors use closely spaced beams of light to detect even the slightest differences in gray scale between the target and the background within their field-of-view. They are ideal for edge and diameter detection as well as detecting

## At a glance

- Proximity contrast line sensor in a compact housing
- Application-specific sensor functions
- Detect position of edge of material
- Diameter, width and gap detection of different objects


## Your benefits

- Cost-effective solution to reliably determine edge position and width measurement
- Easy-to-integrate, compact housing can be mounted over the web so less downtime is required for maintenance
- No reflector is required, reducing maintenance and providing greater product reliability. Reduces downtime. Only array sensors available in diffuse mode, making them ideal for environments where dirt and dust can interfere with other types of solutions that require a reflector.
widths and gaps. SICK's array sensors offer industry-leading reproducibility, in addition to compact, rugged metal housings for use in highly restricted or harsh environments.
- Very high reproducibility of 0.03 mm
- Large measurement range: 30 mm
- Visible white LED light spot to enable accurate alignment
- Simple setup, no teach-in necessary
- High reproducibility of 0.03 mm and industry-leading resolution enable greater accuracy and quality control
- Highly visible white LED light spot ensures fast and accurate alignment, reducing time-consuming fine adjustment
- No teach, program or menu activities make setup virtually hassle free

[^49]

## Detailed technical data

## Features

| Dimensions (W x H x D) | $24.3 \mathrm{~mm} \times 59.8 \mathrm{~mm} \times 54.1 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance | $25 \mathrm{~mm} / 100 \mathrm{~mm}$ (depending on type) |
| Housing design (light emission) | Rectangular |
| Operating range | $20 \mathrm{~mm}, 30 \mathrm{~mm} / 90 \mathrm{~mm}, 110 \mathrm{~mm}$ (depending on type) |
| Measurement range | $20 \mathrm{~mm} / 30 \mathrm{~mm}$ (depending on type) |
| Minimum detectable object (MDO) | $0.8 \mathrm{~mm} / 1.6 \mathrm{~mm}$ (depending on type) |
| Light source | LED |
| Type of light | Visible white light |
| Wave length | $400 \mathrm{~nm} \ldots 700 \mathrm{~nm}$ |
| Repeatability | $0.03 \mathrm{~mm}{ }^{1)} / 0.05 \mathrm{~mm}{ }^{\text {1) }}$ (depending on type) |
| Linearity ${ }^{2}$ ( | $\pm 2 \%$ |
| ${ }^{\text {1) }}$ With respect to sensing distance. |  |
| 2) Analog current range (16 mA) |  |

## Mechanics/electronics

| Supply voltage ${ }^{1)}$ | $\leq 24 \mathrm{VDC}$ |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}$ |
| Power consumption ${ }^{3}$ | < 3.1 W |
| Output type | PNP: HIGH $=\mathrm{V}_{\mathrm{s}}-\leq 2 \mathrm{~V} /$ LOW approx. $\mathrm{O} \mathrm{V} / \mathrm{NPN}$ : HIGH $=$ approx. $\mathrm{V}_{\mathrm{s}} /$ LOW $\leq 2 \mathrm{~V}$ (depending on type) |
| Output type | PNP ${ }^{4)} / \mathrm{NPN}^{4)}$ (depending on type) |
| Analog output $\mathrm{Q}_{\mathrm{A}}$ | 4 mA ... 20 mA |
| Resolution of analog output | 12 bit |
| Output rate of analog output | 1 ms |
| Output current $\mathrm{I}_{\text {max }}$. | < 100 mA |
| Initialization time ${ }^{\text {5 }}$ | 0.48 s |
| Connection type | Connector M12, 5-pin |
| Protection class | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Enclosure rating | IP 67 |
| Weight | 135 g |
| Housing material | Metal |

${ }^{1)} \pm 20 \%$. Operation in short-circuit protected network max. 8 A .
${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
${ }^{3}$ ) Without load.
${ }^{4}$ ) Active when object detected.
${ }^{5}$ ) Typ. max. 1.6 s .

## Ambient data

| Ambient operating temperature | $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

Ordering information
Other models $\rightarrow$ www.sick.com/de/en/Ax20
AT20E

- Functional principle: Edge detection
- Operationg mode: Proximity and reflector

| Sensing distance | Measurement range | Repeatability ${ }^{1)}$ | MDO | Output type ${ }^{2)}$ | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 mm | 20 mm | 0.03 mm | 0.8 mm | PNP | AT20E-PM111 | 1044484 |
|  |  |  |  | NPN | AT20E-NM111 | 1046458 |
| 100 mm | 30 mm | 0.05 mm | 1.6 mm | PNP | AT20E-PM331 | 1045990 |
|  |  |  |  | NPN | AT20E-NM331 | 1046459 |

${ }^{1)}$ With respect to sensing distance.
${ }^{2)}$ Active when object detected.

## AL20E

- Functional principle: Edge detection
- Operationg mode: Reflector

| Sensing distance | Measurement range | Repeatability ${ }^{1)}$ | MDO | Output type ${ }^{2)}$ | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 mm | 20 mm | 0.03 mm | 0.8 mm | PNP | AL20E-PM111 | 1046463 |
|  |  |  |  | NPN | AL20E-NM111 | 1046460 |
| 100 mm | 30 mm | 0.05 mm | 1.6 mm | PNP | AL20E-PM331 | 1046462 |
|  |  |  |  | NPN | AL20E-NM331 | 1046461 |

${ }^{1)}$ With respect to sensing distance.
${ }^{2)}$ Active when object detected.

## AT20D

- Functional principle: Diameter detection
- Operationg mode: Proximity and reflector

| Sensing distance | Measurement range | Repeatability ${ }^{\text {1) }}$ | MDO | Output type ${ }^{2)}$ | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 mm | 20 mm | 0.03 mm | 0.8 mm | PNP | AT20D-PM111 | 1046464 |
|  |  |  |  | NPN | AT20D-NM111 | 1046466 |
| 100 mm | 30 mm | 0.05 mm | 1.6 mm | PNP | AT20D-PM331 | 1046465 |
|  |  |  |  | NPN | AT20D-NM331 | 1046467 |

[^50]Dimensional drawing (Dimensions in mm (inch))



Connection diagram
Cd-315



Setting the switching threshold


| Sensing <br> distance | Operating <br> range | Measurement <br> range | Light spot <br> size |
| :---: | :---: | :---: | :---: |
| 25 mm | $20 \mathrm{~mm} \ldots 30 \mathrm{~mm}$ | 20 mm | $30 \mathrm{~mm} \times 5 \mathrm{~mm}$ |
| 100 mm | $90 \mathrm{~mm} \ldots 110 \mathrm{~mm}$ | 30 mm | $50 \mathrm{~mm} \times 10 \mathrm{~mm}$ |

## Recommended accessories

## Mounting brackets and mounting plates

## Mounting brackets

| Figure | Description | Part no. |  |
| :--- | :--- | :--- | :--- |
|  | Mounting bracket, stainless steel (1.4404), without mounting material, for DT20 Hi | Type | BEF-WN-DT20 |
|  |  |  |  |

## Reflectors

| Description | Type |
| :--- | :---: | :---: |
| Glass covered reflector, $70 \mathrm{~mm} \times 16 \mathrm{~mm}$, reflective area: $40 \mathrm{~mm} \times 10 \mathrm{~mm}$ | Part no. |

Reflective tape

| Description | Part no. |
| :--- | :--- | :--- |
| IRF 2000 reflective tape, $95 \mathrm{~mm} \times 30 \mathrm{~mm} \times 0.3 \mathrm{~mm}$, without polarization effect | Type |
| IRF 2000 reflective tape, $110 \mathrm{~mm} \times 30 \mathrm{~mm} \times 0.15 \mathrm{~mm}$, without polarization effect | REF-AX-002 |
| IRF 2000 reflective tape, $220 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm}$, without polarization effect | REF-AX-001 |
| IRF 2000 reflective tape, $220 \mathrm{~mm} \times 50 \mathrm{~mm} \times 0.3 \mathrm{~mm}$, without polarization effect | REF-AX-004 |

## Plug connectors and cables

Connecting cables with female connector
M12, 5-pin, PVC, chemical resistant

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-G10M | 6010544 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05M | 6009869 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-W10M | 6010542 |

$\rightarrow$ For additional accessories, please see page K-240

## MARKLESS SENSORS



## Running markless for stability and design freedom

The markless sensor is based on a pattern recognition principle. A taughtin image is used as a reference for the detection of a recurring contrast pattern. A stable switching signal is generated at high speed thanks to new technology without print marks. The markless sensor is ideal for applications in the packaging industry. User-friendly configuration is offered via the sensor's control panel or by using SICK's SOPAS software via Ethernet.

## Your benefits

- Reliable detection, even with complex images reduces system downtime and waste
- Fewer machine builder restrictions mean more freedom when designing packaging
- Allows for more efficient utilization of space on the product instead of using unnecessary print marks and place markers
- Faster and easier format change by teaching of saved formats via Ethernet
- Monitor process and teach quality via a display or SOPAS, increasing reliability
- Fast and simple sensor alignment via a visible light spot and notches on the housing
- Easy sensor teach-in, directly via the control panel, external teach-in signal or using SOPAS via Ethernet

General information ..... I-226
Product family overview ..... I-231
ML20 ..... I-232Running markless for stability and design freedom


## RUNNING MARKLESS FOR STABILITY AND DESIGN FREEDOM

Fewer marks - more design freedom! If SICK markless sensors could demonstrate, this is what their placards would say. With innovative technology and a whole new level of flexibility regarding the contrast patterns to be used, they are paving the way to a design-friendly future.

SICK markless sensors are particularly strong when it comes to rotary labeling: for example, when controlling the cutting process to isolate labels without the need for space-consuming
and unattractive print marks. Further advantages over sensors from other manufacturers include less machine downtime and less wastage due to incorrect cutting.


## MORE DESIGN FREEDOM ACROSS THE ENTIRE FORMAT

No more playing hide and seek with marks on banderoles. The ML20 markless sensor gives a whole new meaning to "freedom from marks". With the ML20, the need for print marks on beverage banderoles and packages for process control is a thing of the past.

## Banderole currently used with contrast mark



New banderole without mark and with complete design freedom across the entire area


## Your benefits

- Entire label can be used for advertising information
- No need to cover the contrast mark through material overlapping
- Low costs due to less material used
- No erroneous switching due to contrasts similar to marks


## TECHNOLOGY

The principle of operation for the markless sensors is based on a line sensor, which continuously searches for contrast differences in the available print image. This allows an exact switching point to be determined, even at high speeds.


Image captured from the perspective of the ML20

## Teach-in and configuration

Up to now, the position and mark were crucial for the correct teach-in of a sensor. With markless sensors, this is no longer necessary. Teaching-in new formats is extremely simple. With the ML20 markless sensor, formats already taught can be
saved via the SOPAS software and Ethernet UDP and reloaded to the sensor upon reuse. This reduces system and machine downtimes.


The red lines show the start and end points of an ideal teachin procedure. Its starting position is then the switching point position.

The red circles identify the potential reference areas searched by the sensor when trying to detect the pattern.

## AN INNOVATIVE SOLUTION TO REQUIREMENTS

The innovative ML20 combines the flexibility of a vision sensor with precise mark detection in one housing. The use of a line allows quick and precise switching to repeating contrast patterns in a large field of view. Once again, SICK has succeeded in combining experience and expertise in tried-and-tested technologies and presenting the market with a pioneering sensor.

## MARKLESS SENSOR*

- Speed of up to max. $7 \mathrm{~m} / \mathrm{s}$
- Simple teach-in through automatic selection of contrast areas in the overall image
- Accuracy of up to 0.6 mm
* An encoder or motor feedback system is required for operation.


## Contrast sensor

- Extremely high accuracy ( 0.1 mm )
- Extremely high speed (> $7 \mathrm{~m} / \mathrm{s}$ )


Analysis of areas with contrast differences in overall image


## PRODUCT FAMILY OVERVIEW



Running markless for stability and design freedom

| Technical data overview |  |
| :---: | :---: |
| Max. movement speed | $7 \mathrm{~m} / \mathrm{s} / 3.5 \mathrm{~m} / \mathrm{s}$ (selectable) |
| Sensing distance | 20 mm |
| Repeatability | 0.6 mm / 0.3 mm (selectable) |
| Output type | PNP |
| At a glance |  |
|  | - Tough metal housing <br> - Scanning speed of $7 \mathrm{~m} / \mathrm{s}$ <br> - Monitor process quality via a control panel or SOPAS, via Ethernet <br> - Easy sensor teach-in and alignment <br> - Reproducibility up to 0.3 mm (2 Sigma) <br> - Plug can be rotated $90^{\circ}$ |
| Detailed information | $\rightarrow 1-232$ |

## RUNNING MARKLESS FOR STABILITY AND DE SIGN FREEDOM



## Additional information

Detailed technical data . . . . . . . . I-233
Ordering information . . . . . . . . . I-234
Dimensional drawing . . . . . . . . . I-234
Connection diagram. . . . . . . . . . I-235
Recommended accessories . . . I-235

## Product description

The markless sensor is based on a pattern recognition principle. A taughtin image is used as a reference for the detection of a recurring contrast pattern. A stable switching signal is generated at high speed thanks to new

## At a glance

- Tough metal housing
- Scanning speed of $7 \mathrm{~m} / \mathrm{s}$
- Monitor process quality via a control panel or SOPAS, via Ethernet


## Your benefits

- Reliable detection, even with complex images reduces system downtime and waste
- More freedom when designing packaging
- Allows for more efficient utilization of space on the product instead of using unnecessary print marks and place markers
- Faster and easier format change by teaching of saved formats via Ethernet
technology without print marks. The markless sensor is ideal for applications in the packaging industry. User-friendly configuration is offered via the sensor's control panel or by using SICK's SOPAS software via Ethernet.
- Easy sensor teach-in and alignment
- Reproducibility up to 0.3 mm (2 Sigma)
- Plug can be rotated $90^{\circ}$
- Monitor process and teach quality via a display or SOPAS, increasing reliability
- Fast and simple sensor alignment via a visible light spot and notches on the housing
- Easy sensor teach-in, directly via the control panel, external teach-in signal or using SOPAS via Ethernet

[^51]

## Detailed technical data

## Features

| Dimensions (W x H x D) | $46 \mathrm{~mm} \times 77 \mathrm{~mm} \times 46 \mathrm{~mm}$ |
| :--- | :--- |
| Sensing distance | 20 mm |
| Housing design (light emission) | Rectangular |
| Sensing distance tolerance | $\pm 2.5 \mathrm{~mm}$ |
| Light source ${ }^{1)}$ | LED |
| Type of light | Visible white light |
| Wave length | $400 \mathrm{~nm} \ldots 700 \mathrm{~nm}$ |
| Repeatability ${ }^{2)}$ | $0.6 \mathrm{~mm} \mathrm{(7} \mathrm{m/s)} \mathrm{/} 0.3 \mathrm{~mm}(3.5 \mathrm{~m} / \mathrm{s})$ |
| Max. movement speed | $7 \mathrm{~m} / \mathrm{s}$ |
| Teach-in mode | Start stop teach, trigger teach |
| Picture length (min.) | $\geq 40 \mathrm{~mm}$ |
| Picture length (max.) | $\leq 1,000 \mathrm{~mm}$ |
| Picture height (min.) | $\geq 34 \mathrm{~mm}$ |
| Tolerance lateral movement | $\pm 5 \mathrm{~mm}$ |

${ }^{1)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.
${ }^{2)}$ Statistical error 20 .

## Mechanics/electronics

| Supply voltage ${ }^{\text {1) }}$ | 12 V DC ... 30 V DC |
| :---: | :---: |
| Ripple ${ }^{2)}$ | $\leq 5 \mathrm{~V}_{\mathrm{pp}}$ |
| Power consumption ${ }^{3)}$ | < 6 W |
| Output type | PNP: HIGH $=\mathrm{V}_{\text {S }}-\leq 2 \mathrm{~V} /$ LOW $<0,5 \mathrm{~V}$ |
| Status output ${ }^{4)}$ | PNP: HIGH $=\mathrm{V}_{S}-\leq 2 \mathrm{~V} / \mathrm{LOW}<0,5 \mathrm{~V}$ |
| Output type | PNP |
| Output current $I_{\text {max. }}{ }^{\text {5) }}$ | < 100 mA |
| Input, teach-in (ET) | PNP: Teach: $\mathrm{U}=12 \mathrm{~V} \ldots<\mathrm{U}_{\mathrm{V}}$, Run: $\mathrm{U}<2 \mathrm{~V}$ |
| Input, blanking input (AT) ${ }^{\text {6) }}$ | PNP: blanked: $\mathrm{U}=12 \mathrm{~V} \ldots<\mathrm{Uv}$, free-running $\mathrm{U}<2 \mathrm{~V}$ |
| Initialization time | $<10 \mathrm{~s}$ |
| Retention time (ET) | $\geq 6 \mathrm{~s}$, non-volatile memory |
| Connection type | Connector M12, 12-pin / Connector M12, 4-pin |
| Ambient light safety | 30,000 lx |
| Protection class | III |
| Circuit protection | $\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected, Output Q short-circuit protected, Interference suppression |
| Fieldbus interface | EtherNet/IP |
| Enclosure rating | IP 65 |
| Weight | 325 g |
| Housing material | Metal |
| Encoder resolution | $100 \mu \mathrm{~m} \ldots 400 \mu \mathrm{~m}$ (in $1 \mu \mathrm{~m}$ ) |
| Encoder input | Differentiel: 4,5 V-5,5 V/TTL / RS-422, single ended: $12 \mathrm{~V}-30 \mathrm{~V} / \mathrm{HTL} /$ push-pull |

[^52]
## Ambient data

| Ambient operating temperature | $-10{ }^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient storage temperature | $-20^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ |
| Shock load | According to IEC 60068 |
| UL File No. | NRKH.E181493 \& NRKH7.E181493 |

## Ordering information

Other models $\rightarrow$ www.sick.com/de/en/ML20

- Data interface: Ethernet TCP/IP

| Light source ${ }^{1)}$ | Max. movement <br> speed | Sensing distance | Repeatability ${ }^{2)}$ | Output type | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LED | $7 \mathrm{~m} / \mathrm{s} / 3.5 \mathrm{~m} / \mathrm{s}$ | 20 mm | $0.6 \mathrm{~mm}(7 \mathrm{~m} / \mathrm{s}) /$ <br> $0.3 \mathrm{~mm}(3.5 \mathrm{~m} / \mathrm{s})$ | PNP | ML20M-P1211 | 1044675 |

${ }^{1)}$ Average service life: $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{U}}=+25^{\circ} \mathrm{C}$.
${ }^{2}$ ) Statistical error $2 \sigma$.

Dimensional drawing (Dimensions in mm (inch))

(4)
(1) Center of optical axis
(2) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$
(3) Connector M12, 12-pin/Connector M12, 4-pin, rotatable up to $90^{\circ}$ (Ethernet)
(4) Display and function buttons
(5) Function signal indicator (green) "on"
(6) Function signal indicator (yellow) "Q"
(7) Function signal indicator (green) "Link"
(8) Function signal indicator (yellow) "Act"

Connection diagram
Cd-320


$\rightarrow \quad$ wht $\dot{3}$ not connected
$\longrightarrow$ grn! $\frac{4}{5}$ Enc B

- yel $\frac{6}{2}$ Enc $\bar{B}$
$\rightarrow \quad$ blk! $\frac{7}{8}$ Qout
- gra; 8 Teach
- red 9 not connected


Statusout
gra/pnk; 11 Enc A


M12 (A-coded)
(1) Connection diagram M12, 12-pin

## Recommended accessories

## Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
| 埌 | Zinc plated steel (sheet), Diecast zinc (clamp) | Plate N04 for universal clamp bracket, steel | BEF-KHS-NO4 | 2051610 |
|  | Steel, zinc coated | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |

## Plug connectors and cables

Connecting cables with female connector
M12, 12-pin, PVC

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 12-pin, angled, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 12$-wire | DOL-1212- <br> W05MAS02 | 6044109 |
|  | Female connector, M12, 12-pin, straight, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 12$-wire, twisted pair | $\begin{aligned} & \text { DOL1212- } \\ & \text { G05MAS02 } \end{aligned}$ | 6042754 |

Connection cables with female connector and male connector
M12, 12-pin, PVC

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 12-pin, straight, shielded | Male connector, M12, 12- <br> pin, straight | $5 \mathrm{~m}, 12$-wire, twisted pair | DSL-1212- <br> G05MAS02 | 6045234 |

Connection cables with male connector and male connector
M12, 4-pin, Ethernet

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male connector, M12, <br> 4-pin, angled, D-coded, shielded | Male connector, RJ45, 8-pin, straight | 5 m | Connection cable (male connectormale connector) | 6039488 |
|  | Male connector, M12, 4-pin, straight, D-coded, shielded | Male connector, RJ45, 8-pin, straight | $5 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G05ME | 6034415 |

[^53]
## STANDARD FUNCTIONS WITH IO-LINK



SICK sensors with IO-Link functions that can be integrated into an automation system offer a whole host of useful functions, from configuration and operation all the way through to monitoring. Even the standard functions go far beyond the scope of straightforward binary $0 / 1$ switching signals.

## OPTIMIZED AUTOMATION FOR MACHINES AND SYSTEMS



## Condition monitoring / diagnostics

Implementing diagnostics and self-test options enables features such as contamination evaluation for sensors. Thanks to the monitoring capabilities of the sensors, preventive maintenance can be carried out using a precise maintenance plan. This ability to predict machine status even extends across area boundaries. The advantages of this are reduced maintenance and repair times, minimal risk of failure, as well as accurate fault localization and diagnostics.


## Flexible sensor adjustment

An IO-Link sensor receives optimized, application-specific parameters (such as the sensing distance, hysteresis or threshold) from the automation system according to the production process or the product that is to be produced. The advantages of this are reduced machine downtimes and changeover times when switching products, more machine flexibility, and the prevention of incorrect settings.


## Easy device replacement

Sensors with IO-Link can be replaced quickly and easily, as they are able to adopt the set function parameters without any alterations. The parameters are stored in the IO-Link master or in the control system. The advantages of this are minimal downtimes, guaranteed machine availability, as well as recorded and documented replacement processes.


## ACCESSORIES



## Perfect sensor integration made easy

Innovative sensor technology is only one side of the coin when talking about intelligent automation solutions. The picture is completed by matching accessories for professional and cost-effective integration. Whether electrical connection technology or mechanical mounting systems, only the right integrative system products lead to a high quality,
highly available application solution. The advantage? Sensors and accessories work in conjunction to offer maximum operational safety.
In addition, the user is able to save additional costs for development, manufacture and procurement. A wide range of accessory components are always available on short-notice - convenient
single-source availability in combination with sensors. And in the event that a custom solution is required, SICK is on your side as a reliable and competent partner. Tailored developments and adaptations can be implemented in just a short period of time.

Mounting systems ..... K-244
Reflectors and optics. ..... K-249
Connection systemsK-254

## MOUNTING SYSTEMS AND CONNECTIVITY

Mounting systems


To integrate SICK sensors perfectly into a machine or system, mounting equipment tailored precisely to the sensors is required. Whether fine adjustment to precision equipment or protection against harsh environmental conditions, SICK provides matching designs and products for mounting, alignment, and protection for its sensors. When it comes to special applications, SICK works with the customer to develop tailored and system-specific mounting elements, which are then delivered with the sensor.

## Your benefits

- Quick system installation and maintenance thanks to a broad portfolio of simple, practical mounting options tailored to SICK sensors
- Flexible, customized alignment of the sensor to the object being detected using the universal clamp system
- Prevention of sensor damage (e.g. due to mechanical loads) and guarantee of sensor functionality with the aid of SICK sensor protection solutions
- Application-specific solutions for mounting, aligning, and protecting sensors


## Passive connectivity



A broad portfolio of termination screw male and female connectors allows customized wiring solutions to be implemented. Depending on the requirements, SICK offers different lengths of cable and materials that are delivered quickly and pre-assembled free of errors. Connecting cables (with a molded round connector at one end and open at the other end) offer maximum flexibility when wiring sensors.

## Your benefits

- Operational safety because the connectivity is designed for the sensors
- Low costs thanks to high-quality components with long service lives
- Guaranteed productivity thanks to reliable detection
- Ready to assemble plug connectors with screw connection or insulation piercing
- Broad portfolio of connecting and extension cables with PUR jacket (high resistance to oils, lubricants, and coolants), PVC jacket (good resistance to chemicals for use in dry zones), and for use in hygienic and washdown zones (maximum resistance to chemicals, acids, alkalis, and cleaning agents)


## Mounting systems

## Mounting brackets and mounting plates

## Mounting brackets

| Figure | Material | Description | Type | Part $n 0$. | $\begin{aligned} & 0 \\ & 0.0 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$ | $\frac{\stackrel{0}{y}}{\sum_{y}^{0}}$ |  |  | $\sum_{0}$ | $\sum$ | 읒 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stainless steel | Mounting bracket for wall mounting | BEF-W100-A | 5311520 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - |
|  |  | Mounting bracket, stainless steel (1.4404), without mounting material | BEF-WN-DT20 | 4043524 | - | - | - | - | - | - | $\bigcirc$ |
|  | Steel, zinc coated | Mounting bracket for floor mounting | BEF-W100-B | 5311521 | $\bigcirc$ | $\bigcirc$ |  | - | $\bigcirc$ | $\bigcirc$ | - |
|  |  |  | BEF-WN-W100-S01 | 4073866 | $\bigcirc$ | $\bigcirc$ | - | - | , | $\bigcirc$ | - |
|  |  | Mounting bracket | BEF-WN-W9-2 | 2022855 | - | - | - | - | - | - | - |

$\rightarrow$ For dimensional drawings, please see page K-245

## Mounting plates


$\rightarrow$ For dimensional drawings, please see page K-245
Universal bar clamp systems

| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Steel, zinc coated | Plate G for universal clamp bracket | BEF-KHS-G01 | 2022464 |
|  |  | Plate K for universal clamp bracket | BEF-KHS-K01 | 2022718 |
|  |  | Universal clamp bracket for rod mounting | BEF-KHS-KH1 | 2022726 |
|  |  | Plate $L$ for universal clamp bracket | BEF-KHS-L01 | 2023057 |
|  | Zinc plated steel (sheet), Diecast zinc (clamp) | Plate N08 for universal clamp bracket | BEF-KHS-N08 | 2051607 |
|  |  | Plate NO4 for universal clamp bracket, steel | BEF-KHS-N04 | 2051610 |


| Figure | Material | Description | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: |
|  | Stainless steel 1.4571 (sheet), Stainless steel 1.4408 (clamp) | Plate N08N for universal clamp bracket | BEF-KHS-N08N | 2051616 |
|  |  | Plate N04N for universal clamp bracket | BEF-KHS-N04N | 2051620 |
|  |  | Plate N11N for universal clamp bracket | BEF-KHS-N11N | 2071081 |
|  | Steel, zinc coated | Mounting bar, straight, 200 mm , steel | BEF-MS12G-A | 4056054 |
|  |  | Mounting bar, straight, 300 mm , steel | BEF-MS12G-B | 4056055 |
|  |  | Mounting bar, straight | BEF-M12GF-A | 2059414 |
|  |  | Mounting bar, L-shaped, $150 \mathrm{~mm} \times$ 150 mm , steel | BEF-MS12L-A | 4056052 |
|  |  | Mounting bar, L-shaped, $250 \times 250 \mathrm{~mm}$, steel | BEF-MS12L-B | 4056053 |
|  | Steel, zinc coated | Mounting bar, Z-shaped, 150 mm x $70 \mathrm{~mm} \times 150 \mathrm{~mm}$, steel | BEF-MS12Z-A | 4056056 |
|  |  | Mounting bar, Z-shaped, 150 mm x $70 \mathrm{~mm} \times 250 \mathrm{~mm}$, steel | BEF-MS12Z-B | 4056057 |
|  | Aluminum | Bar clamp for bar diameter of 12 mm (fixing the mounting rod) | BEF-RMC-D12 | 5321878 |

$\rightarrow$ For dimensional drawings, please see page K-247
Dimensional drawings mounting systems

## BEF-W100-A



BEF-WN-DT20


BEF-W100-B


BEF-WN-W9-2


BEF-WN-W100-S01


BEF-AP-KTMS01

(1) Threaded mounting hole M3
(2) Threaded mounting hole M2.5
(3) Fixing hole M3

Dimensional drawings universal bar clamp systems

BEF-KHS-G01


BEF-KHS-K01


BEF-KHS-NO4, BEF-KHS-NO4N


BEF-KHS-N08, BEF-KHS-NO8N


BEF-KHS-KH1


BEF-KHS-N11N


BEF-MS12G-A
BEF-MS12G-B

(1) BEF-MS12G-(N)A: A $=200 \mathrm{~mm}$
(2) BEF-MS12G-(N)B: A $=300 \mathrm{~mm}$

BEF-M12GF-A


BEF-MS12L-A, BEF-MS12L-B

(1) BEF-MS12L-(N)A: A $=200 \mathrm{~mm}, \mathrm{~B}=150 \mathrm{~mm}$
(2) BEF-MS12L-(N)B: $A=250 \mathrm{~mm}, \mathrm{~B}=250 \mathrm{~mm}$

BEF-RMC-D12


BEF-MS12Z-A, BEF-MS12Z-B

(1) BEF-MS12Z-(N)A: $A=150 \mathrm{~mm}, \mathrm{~B}=70 \mathrm{~mm}, \mathrm{C}=150 \mathrm{~mm}$ (2) BEF-MS12Z-(N)B: $A=150 \mathrm{~mm}, \mathrm{~B}=70 \mathrm{~mm}, \mathrm{C}=250 \mathrm{~mm}$

Reflectors and optics
Lens and accessories

| Description | Diameter | Type | Part no. |  |  | $\begin{aligned} & \text { त } \\ & \frac{0}{0} \\ & \vdots \\ & N \\ & N \\ & \vdots \\ & \vdots \end{aligned}$ | $\stackrel{\bullet}{\text { è }}$ | $\stackrel{\infty}{5}$ | $\stackrel{9}{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lens, 40 mm sensing distance | 26 mm | OBJ-210 | 2010945 | $\bigcirc$ | - | $\bigcirc$ | - | - | - |
| Lens, 10 mm sensing distance | 25.6 mm | OBJ-211 | 1004936 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | - | - |
| Lens, 20 mm sensing distance | 25.6 mm | OBJ-212 | 1011506 | - | $\bigcirc$ | $\bigcirc$ | - | - | - |
| Lens, 10 mm sensing distance | 26 mm | OBJ-LUT3-10 | 2016348 | - | - | - | - | $\bigcirc$ | $\bigcirc$ |
| Lens, 20 mm sensing distance | 26 mm | OBJ-LUT3-20 | 2016349 | - | - | - |  | - | - |
| Lens, 50 mm sensing distance | 26 mm | OBJ-LUT3-50 | 2016350 | - | - | - |  | - | $\bigcirc$ |

$\rightarrow$ For dimensional drawings, please see page K-251

## Reflectors and reflective tape

| Figure | Description | Type | Part no. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IRF 2000 reflective tape, $110 \mathrm{~mm} \times 30 \mathrm{~mm} \times 0.3 \mathrm{~mm}$, without polarization effect | REF-AX-001 | 2049250 | $\bigcirc$ | - |
|  | IRF 2000 reflective tape, $95 \mathrm{~mm} \times 30 \mathrm{~mm} \times 0.15 \mathrm{~mm}$, without polarization effect | REF-AX-002 | 2049249 | $\bigcirc$ | - |
| 成裡 | IRF 2000 reflective tape, $220 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm}$, without polarization effect | REF-AX-004 | 2062695 | $\bigcirc$ | - |
|  | IRF 2000 reflective tape, $220 \mathrm{~mm} \times 50 \mathrm{~mm} \times 3 \mathrm{~mm}$, without polarization effect | REF-AX-005 | 2069161 | - | - |
|  | Reflector with glass cover, $70 \mathrm{~mm} \times 16 \mathrm{~mm}$, reflective are: $40 \mathrm{~mm} \times 10 \mathrm{~mm}$ | REF-AX-007 | 2080183 | $\bigcirc$ | $\bigcirc$ |

$\rightarrow$ For dimensional drawings, please see page K-251
Fibers
Proximity system

- Core material: Glass fiber
- Jacket material: stainless steel
- Ambient operating temperature: $-50^{\circ} \mathrm{C}+250^{\circ} \mathrm{C}$

| Mounting sleeve dimension | Dimensions end sleeve | Bend radius, fibre-optic cable | Type | Part no . |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5/16" x 24 | 5/16" x 24 | 19 mm | LBSAT32900 | 7020036 | $\bigcirc$ |
|  |  |  | LBST32900 | 7020046 | $\bigcirc$ |
|  | $\varnothing$ 4,7 mm | 19 mm | LBSTA32900 | 7020048 | - |
|  |  |  | LBSTA325000 | 7022348 |  |
| Ø 6,4 mm | $\emptyset 4,7 \mathrm{~mm}$ | 19 mm | LBSAA23900 | 7020103 |  |
| $\varnothing 7,1 \mathrm{~mm}$ | $\emptyset 4,7 \mathrm{~mm}$ | 50 mm | LSSF32500 | 7122528 | $\bigcirc$ |
| Ø 7,2 mm | $\emptyset 1,6 \mathrm{~mm}$ | 19 mm | LBSM12900 | 7020054 | - |


| Mounting sleeve dimension | Dimensions end sleeve | Bend radius, fibre-optic cable | Type | Part no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\emptyset 7,4 \mathrm{~mm}$ | $\emptyset 4,7 \mathrm{~mm}$ | 19 mm | LBSA32900 | 7020040 | $\bigcirc$ |
|  |  |  | LBSF32900 | 7020038 | - |
| $\varnothing 7,7 \mathrm{~mm}$ | $\varnothing$ 2,3 mm | 19 mm | LBSP16900 | 7020044 | $\bigcirc$ |
| 25,4 mm x 19,5 mm x 6,4 mm | 25,4 mm x 19,5 mm x 6,4 mm | 19 mm | LBSR16900 | 7020050 | - |
| $25,4 \mathrm{~mm} \times 19,3 \mathrm{~mm} \times 6,4 \mathrm{~mm}$ | $25,4 \mathrm{~mm} \times 19,3 \mathrm{~mm} \times 6,4 \mathrm{~mm}$ | 19 mm | LBSR32900 | 7020042 | $\bigcirc$ |
| $38,1 \mathrm{~mm} \times 50,8 \mathrm{~mm} \times 9,4 \mathrm{~mm}$ | $38,1 \mathrm{~mm} \times 50,8 \mathrm{~mm} \times 9,4 \mathrm{~mm}$ | 19 mm | LBSR40900 | 7020052 | $\bigcirc$ |

Through-beam system

- Core material: Glass fiber
- Jacket material: stainless steel
- Bend radius, fibre-optic cable: 19 mm
- Ambient operating temperature: $-50^{\circ} \mathrm{C}+250^{\circ} \mathrm{C}$

| Mounting sleeve dimension | Dimensions end sleeve | Type | Part no. |  |
| :---: | :---: | :---: | :---: | :---: |
| $\emptyset 6,4 \mathrm{~mm}$ | $\emptyset 4,7 \mathrm{~mm}$ | LISAA23900 | 7020102 | $\bigcirc$ |
| $\varnothing 7,4 \mathrm{~mm}$ | $\emptyset 4,7 \mathrm{~mm}$ | LISA32900 | 7020039 | $\bigcirc$ |
| $5 / 16 " \times 24$ | $5 / 16 " \times 24$ | LISAT32900 | 7020035 | $\bigcirc$ |
| $\varnothing 7,4 \mathrm{~mm}$ | $\emptyset 4,7 \mathrm{~mm}$ | LISF32900 | 7020037 | $\bigcirc$ |
| $\varnothing 7,2 \mathrm{~mm}$ | $\emptyset 1,6 \mathrm{~mm}$ | LISM12900 | 7020053 | $\bigcirc$ |
| $\varnothing 7,7 \mathrm{~mm}$ | $\emptyset 2,3 \mathrm{~mm}$ | LISP16900 | 7020043 |  |
| $25,4 \mathrm{~mm} \times 19,5 \mathrm{~mm} \times 6,4 \mathrm{~mm}$ | $25,4 \mathrm{~mm} \times 19,5 \mathrm{~mm} \times 6,4 \mathrm{~mm}$ | LISR16900 | 7020049 | $\bigcirc$ |
| 25,4 mm x 19,3 mm x 6,4 mm | $25,4 \mathrm{~mm} \times 19,3 \mathrm{~mm} \times 6,4 \mathrm{~mm}$ | LISR32900 | 7020041 | - |

$\rightarrow$ For dimensional drawings, please see page K-252
Reference material

- Core material: Glass fiber
- Jacket material: stainless steel
- Bend radius, fibre-optic cable: 19 mm
- Ambient operating temperature: $-50^{\circ} \mathrm{C}+250^{\circ} \mathrm{C}$

| Material | Description | Part no. |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |

Dimensional drawings lens and accessories

## OBJ-210



OBJ-211


OBJ-LUT3-20, OBJ-LUT3-50


Dimensional drawings reflectors and reflective tape REF-AX-001


REF-AX-004


OBJ-212


OBJ-LUT3-10


REF-AX-002


REF-AX-005


Dimensional drawings fibers LISAT32900, LBSAT32900


LISTA32900, LBSTA32900


LISAA23900, LBSAA23900


LISM12900, LBSM12900


LISF32900, LBSF32900


LIST32900, LBST32900


LBSTA325000


LSSF32500


LISA32900, LBSA32900


LISP16900, LBSP16900


LISR16900, LBSR16900


LISR32900, LBSR32900


LISR40900, LBSR40900


## Connection systems

## Modules and gateways


$\rightarrow$ For dimensional drawings, please see page K-258

## Plug connectors and cables

Connecting cables with female connector
M8, 3-pin, PUR, halogen-free, Oil / grease resistant

- Cable material: PUR, halogen-free
- Connector material: TPU
- Locking nut material: Zinc die-cast, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 3-pin, straight, unshielded | Cable, open conductor heads | $1 \mathrm{~m}, 3$-wire | D0L-0803-G01MC | 6036455 |
|  |  |  | $2 \mathrm{~m}, 3$-wire | DOL-0803-G02MC | 6025888 |
|  |  |  | $3 \mathrm{~m}, 3$-wire | DOL-0803-G03MC | 6038991 |
|  |  |  | $5 \mathrm{~m}, 3$-wire | DOL-0803-G05MC | 6025889 |
|  |  |  | $10 \mathrm{~m}, 3$-wire | DOL-0803-G10MC | 6025890 |
|  |  |  | 20 m, 3-wire | DOL-0803-G20MC | 6036456 |
|  | Female connector, M8, 3-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 3$-wire | DOL-0803-W02MC | 6025891 |
|  |  |  | $5 \mathrm{~m}, 3$-wire | DOL-0803-W05MC | 6025892 |
|  |  |  | $10 \mathrm{~m}, 3$-wire | DOL-0803-W10MC | 6025893 |

M8, 3-pin, PVC, chemical resistant

- Cable material: PVC, halogen-free
- Connector material: TPU
- Locking nut material: CuZn, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 3-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 3$-wire | DOL-0803-G02M | 6010785 |
|  |  |  | $5 \mathrm{~m}, 3$-wire | DOL-0803-G05M | 6022009 |
|  |  |  | $10 \mathrm{~m}, 3$-wire | DOL-0803-G10M | 6022011 |
|  |  |  | 15 m, 3-wire | DOL-0803-G15M | 6036472 |
|  | Female connector, M8, 3-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 3$-wire | DOL-0803-W02M | 6008489 |
|  |  |  | $5 \mathrm{~m}, 3$-wire | DOL-0803-W05M | 6022010 |
|  |  |  | $10 \mathrm{~m}, 3$-wire | DOL-0803-W10M | 6022012 |
|  |  |  | $15 \mathrm{~m}, 3$-wire | DOL-0803-W15M | 6036473 |

M8, 4-pin, PUR, halogen-free, Oil / grease resistant

- Cable material: PUR, halogen-free
- Connector material: TPU
- Locking nut material: Zinc die-cast, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-G02MC | 6025894 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-G05MC | 6025895 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-G10MC | 6025896 |
|  |  |  | 20 m, 4-wire | DOL-0804-G20MC | 6051148 |
|  | Female connector, M8, 4-pin, straight, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 4$-wire | D0L-0804-G05MAC | 6050809 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-G10MAC | 6050808 |
|  | Female connector, M8, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-W02MC | 6025897 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-W05MC | 6025898 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | D0L-0804-W10MC | 6025899 |

M8, 4-pin, PVC, chemical resistant

- Cable material: PVC, halogen-free
- Connector material: TPU
- Locking nut material: CuZn, nickel-plated

| Figure | Connection type head $A$ | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M8, 4-pin, straight, unshielded | Cable, open conductor heads | $1.5 \mathrm{~m}, 4$-wire | DOL-0804-G1M5 | 6049343 |
|  |  |  | $2 \mathrm{~m}, 4$-wire | DOL-0804-G02M | 6009870 |
|  |  |  | $2.5 \mathrm{~m}, 4$-wire | DOL-0804-G2M5 | 6049344 |
|  |  |  | $3 \mathrm{~m}, 4$-wire | DOL-0804-G03M | 6049342 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-G05M | 6009872 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-G10M | 6010754 |
|  | Female connector, M8, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-0804-W02M | 6009871 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-0804-W05M | 6009873 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-0804-W10M | 6010755 |

M12, 4-pin, PUR, halogen-free, Oil / grease resistant

- Cable material: PUR, halogen-free
- Connector material: TPU
- Locking nut material: Zinc die-cast, nickel-plated

| Figure | Connection type head $A$ | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02MC | 6025900 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05MC | 6025901 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-1204-G10MC | 6025902 |
|  |  |  | $15 \mathrm{~m}, 4$-wire | DOL-1204-G15MC | 6034749 |
|  |  |  | $20 \mathrm{~m}, 4$-wire | DOL-1204-G20MC | 6034750 |
|  |  |  | $25 \mathrm{~m}, 4$-wire | DOL-1204-G25MC | 6034751 |
|  | Female connector, M12, <br> 4-pin, straight, shielded | Cable, open conductor heads | $10 \mathrm{~m}, 4$-wire | DOL-1204-G10MAC | 6041797 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-WO2MC | 6025903 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05MC | 6025904 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-1204-W10MC | 6025905 |

M12, 4-pin, PVC, chemical resistant

- Cable material: PVC, halogen-free
- Connector material: TPU
- Locking nut material: CuZn, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 4-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-G02M | 6009382 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05M | 6009866 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-1204-G10M | 6010543 |
|  |  |  | $15 \mathrm{~m}, 4$-wire | DOL-1204-G15M | 6010753 |
|  |  |  | 20 m, 4-wire | DOL-1204-G20M | 6034401 |
|  | Female connector, M12, 4-pin, straight, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 4$-wire | DOL-1204-G05MA | 6042100 |
|  | Female connector, M12, 4-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 4$-wire | DOL-1204-W02M | 6009383 |
|  |  |  | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05M | 6009867 |
|  |  |  | $10 \mathrm{~m}, 4$-wire | DOL-1204-W10M | 6010541 |
|  |  |  | $15 \mathrm{~m}, 4$-wire | DOL-1204-W15M | 6036474 |
|  |  |  | 20 m, 4-wire | DOL-1204-W20M | 6033559 |
|  | Female connector, M12, 4-pin, angled, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 4$-wire | DOL-1204-W05MA | 6042098 |

M12, 5-pin, PUR, halogen-free, Oil / grease resistant

- Cable material: PUR, halogen-free
- Connector material: TPU
- Locking nut material: Zinc die-cast, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02MC | 6025906 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05MC | 6025907 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-G10MC | 6025908 |
|  | Female connector, M12, 5-pin, straight, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05MAC | 6036384 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-G10MAC | 6036385 |
|  |  |  | $20 \mathrm{~m}, 5$-wire | DOL-1205-G20MAC | 6036386 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02MC | 6025909 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05MC | 6025910 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-W10MC | 6025911 |

M12, 5-pin, PVC, chemical resistant

- Cable material: PVC, halogen-free
- Connector material: TPU
- Locking nut material: CuZn, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 5-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-G02M | 6008899 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-G05M | 6009868 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-G10M | 6010544 |
|  | Female connector, M12, 5-pin, angled, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 5$-wire | DOL-1205-W02M | 6008900 |
|  |  |  | $5 \mathrm{~m}, 5$-wire | DOL-1205-W05M | 6009869 |
|  |  |  | $10 \mathrm{~m}, 5$-wire | DOL-1205-W10M | 6010542 |

M12, 8-pin, PUR, halogen-free

- Cable material: PUR, halogen-free
- Connector material: TPU
- Locking nut material: Zinc die-cast, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 8-pin, straight, unshielded | Cable, open conductor heads | $2 \mathrm{~m}, 8$-wire | DOL-1208-G02MC | 6035620 |
|  |  |  | $5 \mathrm{~m}, 8$-wire | DOL-1208-G05MC | 6035621 |
|  |  |  | $10 \mathrm{~m}, 8$-wire | DOL-1208-G10MC | 6035622 |
|  |  |  | 15 m, 8-wire | DOL-1208-G15MC | 6038559 |
|  |  |  | 20 m, 8-wire | DOL-1208-G20MC | 6038560 |
|  | Female connector, M12, 8 -pin, straight, shielded | Cable, open conductor heads | $2 \mathrm{~m}, 8$-wire | DOL-1208-G02MAH1 | 6032448 |
|  | male connector, M12, | Cable, open conductor | $2 \mathrm{~m}, 8$-wire | DOL-1208-W02MC | 6035623 |
|  | 8-pin, angled, unshielded | heads | $5 \mathrm{~m}, 8$-wire | DOL-1208-W05MC | 6035624 |
|  | Female connector, M12, 8-pin, angled, shielded | Cable, open conductor heads | $2 \mathrm{~m}, 8$-wire | $\begin{aligned} & \text { DOL-1208- } \\ & \text { W02MAS01 } \end{aligned}$ | 6029224 |

## M12, 8-pin, PVC

- Cable material: PVC, halogen-free
- Connector material: TPU
- Locking nut material: CuZn, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 8 -pin, straight, shielded | Cable, open conductor heads | $2 \mathrm{~m}, 8$-wire | DOL-1208-G02MA | 6020633 |
|  |  |  | $5 \mathrm{~m}, 8$-wire | DOL-1208-G05MA | 6020993 |
|  | Female connector, M12, 8 -pin, angled, shielded | Cable, open conductor heads | $2 \mathrm{~m}, 8$-wire | DOL-1208-W02MA | 6020992 |
|  |  |  | $5 \mathrm{~m}, 8$-wire | DOL-1208-W05MA | 6021033 |

## M12, 12-pin, PVC

- Cable material: PVC, halogen-free
- Connector material: TPU
- Locking nut material: CuZn, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, 12-pin, angled, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 12$-wire | DOL-1212- <br> W05MAS02 | 6044109 |
|  | Female connector, M12, 12-pin, straight, shielded | Cable, open conductor heads | $5 \mathrm{~m}, 12$-wire, twisted pair | $\begin{aligned} & \text { DOL1212- } \\ & \text { G05MAS02 } \end{aligned}$ | 6042754 |

$\rightarrow$ For dimensional drawings, please see page K-259
Connection cables with male connector and male connector
M12, 4-pin, PUR, Ethernet

- Cable material: PUR, halogen-free

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no . |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male connector, M12, 4-pin, straight, D-coded, shielded | Male connector, RJ45, 8-pin, straight | $2 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G02ME | 6034414 |
|  |  |  | $5 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G05ME | 6035389 |
|  |  |  | $10 \mathrm{~m}, 4$-wire, AWG26 | SSL-2J04-G10ME | 6030928 |
|  |  |  | 20 m, 4-wire, AWG26 | SSL-2J04-G20ME | 6036158 |
|  |  |  | 25 m, 4-wire, AWG26 | SSL-2J04-G25ME | 6033555 |


| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male connector, M12, <br> 4-pin, angled, D-coded, <br> shielded | Male connector, RJ45, <br> $8-p i n, ~ s t r a i g h t ~$ | 5 m | Connection cable |  |

M12, 4-pin, PUR, halogen-free, EtherNet/IP

- Cable material: PUR, halogen-free
- Locking nut material: Zinc die-cast, nickel-plated

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male connector, M12, 4-pin, straight, D-coded, shielded | Male connector, M12, 4-pin, straight, D-coded | 2 m, 4-wire, CAT5, CAT5e | SSL-1204-G02ME90 | 6045222 |
|  |  |  | 5 m, 4-wire, CAT5, CAT5e | SSL-1204-G05ME90 | 6045277 |
|  |  |  | $10 \mathrm{~m}, 4$-wire, CAT5, CAT5e | SSL-1204-G10ME90 | 6045279 |

$\rightarrow$ For dimensional drawings, please see page K-261
Connection cables with female connector and male connector
M12, 12-pin, PVC

- Cable material: PVC

| Figure | Connection type head A | Connection type head B | Connecting cable | Type | Part no. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Female connector, M12, <br> 12-pin, straight, shielded | Male connector, M12, 12- <br> pin, straight | $5 \mathrm{~m}, 12$-wire, twisted pair | DSL-1212- <br> G05MAS02 | 6045234 |

## Dimensional drawings connection systems

Modules and gateways
SICK Memory Stick


SiLink2 Master


Plug connectors and cables
Connecting cables with female connector
DOL-0803-GxxMC


DOL-0803-WxxMC


DOL-0804-GxxMC


DOL-0804-WxxMC


DOL-1204-GxxMC, DOL-1204-G10MAC


DOL-0803-GxxM


DOL-0803-WxxM


DOL-0804-GxxM


DOL-0804-WxxM


DOL-1204-WxxMC


DOL-1204-GxxM


DOL-1204-WxxM


DOL-1205-GxxMC


DOL-1205-WxxMC


DOL-1204-G05MA


DOL-1204-W05MA


DOL-1205-GxxMAC


DOL-1205-GxxM


DOL-1205-WxxM


DOL-1208-G02MAH1


DOL-1208-GxxMA


| (1) Wht | (5) Gra |
| :--- | :--- |
| (2) Brn | (6) Pnk <br> (3 Grn <br> (4) Yel |

DOL-1208-G02MC


DOL-1208-WxxMC


DOL-1208-WxxMA, DOL-1208-W02MAS01


Dimensional drawings connection cables with male connector and male connector

SSL-2J04-GxxME



B

SSL-1204-GxxME90


## A

## Ambient light immunity

Sensor's resistance to disruptive light sources such as HF tubes, flashing warning lamps, or sunlight. The ambient light immunity for sunlight is defined in lux via the threshold value at which an optical sensor is not yet affected. Optical filters, pulsed light, and multi-bit analysis ensure ambient light immunity.

## B

## Blanking input (AT)

Input with which the status of a sensor can be frozen by creating a voltage. The sensor is then "blanked" and the switching output Q is inactive. This may be required if the sensor is not to detect or switch in certain phases.

## Bus system

A system for transferring data between multiple participating devices via a common cable. It allows high data transmission rates and central control of all sensors. Additional information such as process data and diagnostics data can also be exchanged. SICK registration sensors use the IO-Link and CAN bus systems.
$\rightarrow$ See "IO-Link" on page L-264
$\rightarrow$ See "CAN" on page L-262

## C

## Cable

Cables have different properties depending on the sheath material used:

## PUR cable

- Oil-resistant
- Resistant to drying out and formation of cracks


## PVC cable

- Not suitable for long-term use in surroundings containing oil
- Not resistant to ozone and UV light

Due to the risk of breakage, cables must not be moved at temperatures below $-5^{\circ} \mathrm{C}$.

## CAN

Controller Area Network; an asynchronous, serial bus system. It connects together several devices with equal rights such as sensors and actuators. The data is transferred arbitrarily using identifiers. Owing to its high level of resistance to inference, real time capabilities, and low costs, CAN has become an established technology in many safety-relevant areas such as automotive and automation technology.

## CANopen

A CAN-based communication protocol. It enhances the CAN bus with a protocol structure. The KT8 CAN contrast sensor uses a CANopen-based protocol.

CDRH
Center for Devices and Radiological Health; the publisher of regulations for laser products in the USA. Products for the US market must fulfill these regulations.

## Conformity

Awareness and satisfaction of the requirements of all relevant product safety directives for the respective market. There are essentially two binding laws within the EU for SICK registration sensors:

- EMC Directive 89/336/EEC
- Low Voltage Directive 73/23/EEC

By displaying the CE marking on its products, the sensor manufacturer SICK declares that it has fulfilled the requirements of these directives.

## C

In the USA, the national regulations of the OSHA (Occupational Safety and Health Act) and the NEC (National Electrical Code) apply. Testing is performed by UL (Underwriters Laboratories). Sensors must fulfill the UL approval conditions. If they do not, they may not be used in the USA. Devices with individual approval and an approval number from Underwriters Laboratories bear the letter "L" for "Listed".

## (14) <br> LISTED

UL also provides approval for the USA and Canada.

## Connection diagram

Wire colors are abbreviated as follows in the sensor connection diagram:

- blk = black
- blu = blue
- brn = brown
- gra = gray
- grn = green
- ora = orange
- pnk = pink
- red = red
- trq = turquoise
- vio = violet
- wht = white
- yel = yellow

The following abbreviations are used for the assignment:

- AT
= Blanking input
- Teach $\quad$ Input: External teach-in
- Fine/Coarse = Input: Fine/coarse
- L+ = Power supply
- L/D = Input light/dark switching
- M = Mass
- not connected $=$ not connected
$\begin{aligned} \text { - } \mathrm{Q} / \mathrm{Q} & =\begin{array}{l}\text { Switching output (may have additional } \\ \\ \text { - } \mathrm{Q}_{\mathrm{A}}\end{array} \quad=\begin{array}{l}\text { Analog output }\end{array}\end{aligned}$


## D

## Drift correction

Automatic adjustment of the switching threshold of a sensor in ongoing operation.


Fig. Drift correction
To do this, for example, the greatest (lightest) measured value will be searched for over a certain number of switching cycles. This is then compared with the largest measured value from
the teach-in process. If this measured value changes, the switching threshold is corrected proportionally.
During contamination phases, the switching threshold is corrected and lowered step by step. After the sensor has been cleaned, the switching threshold adjustment returns the switching threshold back to the teach-in switching threshold.

## E

## Electromagnetic compatibility (EMC)

According to EC Directive 2004/108/EC on electromagnetic compatibility, systems and components must satisfy certain properties in order to function smoothly in an electromagnetic environment.
This is achieved as follows:
Restrict sources of interference in devices or design devices to be sufficiently resistant to interference. EMC is regulated by EU Directives and Standards. SICK also has its own stringent standards that exceed the statutory requirements.

## Enclosure rating

Indicates the extent of a device's protection against contact with impurities such as dust or water. The designation for enclosure ratings begins with the letters IP, followed by an initial character indicating the strength of protection against contact and impurities, and a second character for the strength of protection against water ingress.
$\rightarrow$ See "Fig. Enclosure ratings" on page L-268

## External teach-in

Allows the user to make the required settings via the control cable of the sensor.

## F

## Function indicator

On the function indicator, the yellow LED shows the status of the switching output for the sensors. Some sensors also have a second LED that indicates operational readiness.

## H

## Housing material

The housing for SICK registration sensors is made from the following materials:

- Aluminium
- Zinc die cast (powder-coated)
- Plastic, e.g. ABS

If the chemicals frequently or constantly affect the sensor, an application test is required.

## IJ

## Input, external teach (ET)

Input with which a new switching threshold is taught into the sensor via an external input signal. This enables the switching threshold to be altered remotely.

## IO-Link

## © IO-Link

A communication system used in automation technology developed through the collaboration of leading automation technology manufacturers. IO-Link is a point-to-point connection between the control system, sensors, and actuators that allows centrally controlled configuration and readout of the connected devices.
This communication technology and its features allow machines and systems to be operated much more effectively:

- Reduces machine downtime and changeover times
- Convenient parameter configuration
- Improves process quality through continuous monitoring of process parameters


## Jitter

Variation of the switching output over time, caused by the tolerances of electronic components that are always present. This produces variances in a sensor's response time. The response time can therefore be slightly shorter or longer.
$\rightarrow$ See "Response time" on page L-265

## Laser classes

Division of lasers and LEDs into device classes, in ascending order based on the danger to human eyes and skin. The table on the following page shows how they are divided up based on standards EN 60825-1 and DIN VDE 0837. The latter is no longer used in Germany for new lasers.
$\rightarrow$ See "Table: Laser classes" on page L-266

## LED classification

IEC 62471: used since 2006 for LED devices "Safety of Lamps and Lamp Systems".

## Light/dark switching

Sensor setting that can be used to invert the logic of the output. With the "light switching" setting, the switching output $(\mathrm{Q})$ is activated as soon as the receiver element receives more light than the defined switching threshold. With the "dark-switching" setting, the switching output $(\mathrm{Q})$ is activated when the switching threshold is not met.


Fig. Light switching


Fig. Dark switching

## Light spot direction

The switching properties of a sensor are considered optimal if the light spot appears parallel to the mark in the measuring range during measurement.
Depending on the sensor type, the light spot appears from the sensor housing lengthwise or transverse to the narrow side. With some contrast sensors, this outlet can be selected.

## Luminescence scale

Scale in the form of a card printed with luminescence marks of different intensities ( $10 \%$ to $200 \%$ ). This allows sensor readability to be checked for different signal intensities and thus to establish which intensity a luminescence mark needs to have to allow it to be processed without errors. The pigments of the luminescence marks on the card are so stable that they can be used for reference in the long term.

## N

## No false triggering on power-up

A function that only enables the switching output of a sensor after a self-test has been successfully performed when the sensor is switched on. This ensures a defined start-up status and avoids undesired switching.

## 0

OFF delay (release delay)
Artificial pulse stretching for switching signal.


Fig. OFF delay (release delay)


Fig. Light spot direction

## Output current

The current for analog devices, which is present at the output and varies depending on the distance between the target and sensor, e.g. in a range of 4-20 mA.

## Output voltage

The voltage for analog devices, which is present at the output and varies depending on the distance between the target and sensor, e.g. in a range of 0-10 V .

## Plug connector

Connection for exchanging electrical and optical signals. SICK registration sensors have round connectors of size M8 or M12 with screw fittings.

## Protection class

Protection classes specify which safety measures must be in place for electrical equipment to prevent an electric shock. Protection classes are defined in DIN EN 61140. There are four protection classes ranging from "Basic insulation" (Class 0) to "Safety extra-low voltage, double insulation, safety transformer" (Class 3). SICK registration sensors have protection class 2 or 3.


## R

## Repeatability

Difference between measurement results from a measurement range with multiple measurements under identical conditions.

## Reproducibility

$\rightarrow$ See "Repeatability" on page L-265

## Residual ripple

An AC portion of voltage that overlays the operating voltage. This remains after rectification and smoothing of alternating current. For reliable sensor operation, the residual ripple in the power supply must not exceed a specified value, e.g. $5 \mathrm{~V}_{\mathrm{SS}}$ for SICK contrast sensors.

## Response time

The time between an event occurring (set threshold is exceeded) and the sensor switching (switching operation). An event is, for example, when a print mark appears in the sensor's light spot.
The contrast marks move toward the light spot generated by the sender and, when they overshoot the light spot, typically generate an edge for the received signal (see diagram). The cycle time (tc) determines the positioning accuracy with which the edge signal is detected.
Edge detection can fluctuate (jitter) by approximately one period (cycle time) depending on the temporal sequence of the send pulses.


Fig. Response time: tp = sensor switch-on time; tc = sensor cycle time

## Resolution

The resolution describes the smallest possible change that a sensor can detect.

| Risk class | Class 1 | Class 1M | Class 2 | Class 2M | Class 3R | Class 3B | Class 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | - Not dangerous, eye-safe | - Eye-safe when not used with optical concentration instruments | - Not dangerous under shortterm irradiation, eye-safe due to the aversion response and blink reflex | - In the visual spectrum under short-term irradiation up to 0.25 s , not dangerous in the same manner as Class 2 <br> - Blink reflex, depending on whether this relates to a divergent or spread beam, may be unsafe when used with optical instruments | - Irradiation is a maximum of five times higher than the values for Class 1 (or Class 2) <br> - Risk is somewhat lower than with Class 3B | - Dangerous to the eyes and, in special cases, also to the skin | - Very dangerous to the eyes and dangerous to the skin |
| Safety measures |  |  |  |  |  |  |  |
| Protective housing |  | Aim for Class 1 |  |  |  |  |  |
| Safety locks |  |  |  |  | Prevents the removal of covers |  |  |
| Key-operated switch |  |  |  |  | Authorized personnel |  |  |
| Operating elements |  |  |  |  | As far as possible from the beam, use adjustment indicators |  |  |
| Permanently installed optical protective device |  |  |  |  | Limit irradiation (scatter irradiation) |  |  |
| Laser protection officer |  |  |  |  | Order in writing |  |  |
| Laser protection goggles |  | When observing the direct beam |  |  | Always required, adjust the room brightness accordingly |  |  |
| Access restrictions |  |  |  |  | Warning notices, limit times |  |  |
| Instruction |  | Required |  |  |  |  |  |

Table: Laser classes

## S

## Sensing distance

Distance between the front edge of the lens (last optical surface of sensor) and the surface of the target.


Fig. Sensing distance

## Sensing range tolerance

Sensing distance operating range within which the sensor reliably functions. The size of the operating range depends on the clarity of the feature to be detected.


[^54]
## Shiny surfaces

During detection on shiny surfaces, the switching reliability can be increased by tilting the sensor 15 degrees to the vertical. This reflects the shiny component of the reflected light away from the sensor and the sensor then only detects the diffuse reflected light.


Fig. Shiny surfaces

## Storage banks

Storage banks are a sensor's storage areas. They can be used to configure machines or systems for different applications, e.g. changing targets.

## Supply voltage

The supply voltage describes the voltage range within which the sensor works properly.

## Switching frequency

Number of switching processes that a sensor can perform in Hertz (Hz).
The higher the switching frequency, the more intervals are available for a switching process in a given period. The response time and jitter are therefore reduced.

## Switching output

A switching output is the output via which the output state of the sensor is digitally output.

## NPN output

The negative potential is connected to the load here. This output is also referred to as negative switching or current-sinking.


## PNP output

The positive potential is connected to the load here. This output is also known as current sourcing or positive switching.


SICK registration sensors are available with switching types NPN and PNP.

## Switching output Q

Output (cable) via which the output state of the sensor is digitally output.

## T

## Teach-in

Teach-in of features for an object to be detected in the sensor's electronics. In this way, the object is brought into the sensor's light path and its characteristic remission is processed by the receiver. The learning process for determining the switching threshold is started by pressing a button on the device or via an external control cable.
A number of different teach-in procedures allow easy acquisition of switching thresholds. This greatly accelerates commissioning and adjustment of the sensor.
$\rightarrow$ See "Teach-in procedure" on page L-267

## Teach-in procedure

Teach-in can be used to configure sensors in various ways:

- 1-point teach-in
- 2-point teach-in
- Dynamic teach-in

The procedures used for the relevant sensor type are explained in detail in the individual chapters and operating instructions.

## Timer stage

$\rightarrow$ See "Response time" on page L-265

## W

## Wavelength

SICK registration sensors use wavelengths in the electromagnetic spectrum: from 370 nm (UV light with luminescence sensors), to 650 nm (red light for contrast and color sensors), through to 1000 nm (infrared light for fork sensors).


Fig. Wavelength


Fig. Enclosure ratings

| Type | Part no. | Page | Type | Part no. | Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AL20E-NM111 | 1046460 | $\rightarrow \mathrm{H}-220$ | DOL-0803-W02M | 6008489 | $\rightarrow$ K-254 |
| AL20E-NM331 | 1046461 | $\rightarrow \mathrm{H}-220$ | D0L-0803-W05MC | 6025892 | $\rightarrow$ K-254 |
| AL20E-PM111 | 1046463 | $\rightarrow \mathrm{H}-220$ | DOL-0803-W05M | 6022010 | $\rightarrow$ K-254 |
| AL20E-PM331 | 1046462 | $\rightarrow \mathrm{H}-220$ | DOL-0803-W10MC | 6025893 | $\rightarrow \mathrm{K}-254$ |
| AT20D-NM111 | 1046466 | $\rightarrow \mathrm{H}-220$ | DOL-0803-W10M | 6022012 | $\rightarrow$ K-254 |
| AT20D-NM331 | 1046467 | $\rightarrow \mathrm{H}-220$ | DOL-0803-W15M | 6036473 | $\rightarrow \mathrm{K}-254$ |
| AT20D-PM111 | 1046464 | $\rightarrow \mathrm{H}-220$ | DOL-0804-G02MC | 6025894 | $\rightarrow$ K-255 |
| AT20D-PM331 | 1046465 | $\rightarrow \mathrm{H}-220$ | DOL-0804-G02M | 6009870 | $\rightarrow$ K-255 |
| AT20E-NM111 | 1046458 | $\rightarrow \mathrm{H}-220$ | DOL-0804-G03M | 6049342 | $\rightarrow$ K-255 |
| AT20E-NM331 | 1046459 | $\rightarrow \mathrm{H}-220$ | DOL-0804-G05MAC | 6050809 | $\rightarrow$ K-255 |
| AT20E-PM111 | 1044484 | $\rightarrow \mathrm{H}-220$ | D0L-0804-G05MC | 6025895 | $\rightarrow$ K-255 |
| AT20E-PM331 | 1045990 | $\rightarrow \mathrm{H}-220$ | DOL-0804-G05M | 6009872 | $\rightarrow$ K-255 |
| BEF-AP-KTMS01 | 2068786 | $\rightarrow \mathrm{K}-244$ | DOL-0804-G10MAC | 6050808 | $\rightarrow$ K-255 |
| BEF-KHS-G01 | 2022464 | $\rightarrow \mathrm{K}-244$ | DOL-0804-G10MC | 6025896 | $\rightarrow$ K-255 |
| BEF-KHS-K01 | 2022718 | $\rightarrow \mathrm{K}-244$ | DOL-0804-G10M | 6010754 | $\rightarrow$ K-255 |
| BEF-KHS-KH1 | 2022726 | $\rightarrow \mathrm{K}-244$ | DOL-0804-G1M5 | 6049343 | $\rightarrow$ K-255 |
| BEF-KHS-L01 | 2023057 | $\rightarrow \mathrm{K}-244$ | DOL-0804-G20MC | 6051148 | $\rightarrow$ K-255 |
| BEF-KHS-NO4N | 2051620 | $\rightarrow \mathrm{K}-244$ | DOL-0804-G2M5 | 6049344 | $\rightarrow$ K-255 |
| BEF-KHS-N04 | 2051610 | $\rightarrow \mathrm{K}-245$ | DOL-0804-W02MC | 6025897 | $\rightarrow$ K-255 |
| BEF-KHS-N08N | 2051616 | $\rightarrow \mathrm{K}-244$ | DOL-0804-W02M | 6009871 | $\rightarrow$ K-255 |
| BEF-KHS-N08 | 2051607 | $\rightarrow \mathrm{K}-245$ | DOL-0804-W05MC | 6025898 | $\rightarrow$ K-255 |
| BEF-KHS-N11N | 2071081 | $\rightarrow \mathrm{K}-245$ | D0L-0804-W05M | 6009873 | $\rightarrow$ K-255 |
| BEF-M12GF-A | 2059414 | $\rightarrow \mathrm{K}-245$ | DOL-0804-W10MC | 6025899 | $\rightarrow$ K-255 |
| BEF-MS12G-A | 4056054 | $\rightarrow \mathrm{K}-245$ | D0L-0804-W10M | 6010755 | $\rightarrow$ K-255 |
| BEF-MS12G-B | 4056055 | $\rightarrow \mathrm{K}-245$ | DOL-1204-G02MC | 6025900 | $\rightarrow$ K-256 |
| BEF-MS12L-A | 4056052 | $\rightarrow \mathrm{K}-245$ | DOL-1204-G02M | 6009382 | $\rightarrow$ K-255 |
| BEF-MS12L-B | 4056053 | $\rightarrow \mathrm{K}-245$ | DOL-1204-G05MA | 6042100 | $\rightarrow$ K-256 |
| BEF-MS12Z-A | 4056056 | $\rightarrow \mathrm{K}-245$ | DOL-1204-G05MC | 6025901 | $\rightarrow \mathrm{K}-256$ |
| BEF-MS12Z-B | 4056057 | $\rightarrow \mathrm{K}-245$ | DOL-1204-G05M | 6009866 | $\rightarrow$ K-255 |
| BEF-RMC-D12 | 5321878 | $\rightarrow \mathrm{K}-245$ | DOL-1204-G10MAC | 6041797 | $\rightarrow$ K-256 |
| BEF-W100-A | 5311520 | $\rightarrow \mathrm{K}-244$ | DOL-1204-G10MC | 6025902 | $\rightarrow$ K-255 |
| BEF-W100-B | 5311521 | $\rightarrow \mathrm{K}-244$ | DOL-1204-G10M | 6010543 | $\rightarrow$ K-255 |
| BEF-WN-DT20 | 4043524 | $\rightarrow \mathrm{K}-244$ | DOL-1204-G15MC | 6034749 | $\rightarrow$ K-256 |
| BEF-WN-W100-S01 | 4073866 | $\rightarrow \mathrm{K}-244$ | DOL-1204-G15M | 6010753 | $\rightarrow$ K-255 |
| BEF-WN-W9-2 | 2022855 | $\rightarrow \mathrm{K}-244$ | DOL-1204-G20MC | 6034750 | $\rightarrow$ K-256 |
| Connection cable | 6039488 | $\rightarrow \mathrm{K}-258$ | DOL-1204-G20M | 6034401 | $\rightarrow$ K-255 |
| CS81-N1112 | 1028228 | $\rightarrow$ C-102 | DOL-1204-G25MC | 6034751 | $\rightarrow$ K-255 |
| CS81-N3612 | 1028229 | $\rightarrow \mathrm{C}-102$ | DOL-1204-W02MC | 6025903 | $\rightarrow$ K-256 |
| CS81-P1112 | 1028224 | $\rightarrow$ C-102 | DOL-1204-W02M | 6009383 | $\rightarrow$ K-255 |
| CS81-P3612 | 1028225 | $\rightarrow$ C-102 | DOL-1204-W05MA | 6042098 | $\rightarrow$ K-256 |
| CS84-N1112 | 1028230 | $\rightarrow$ C-102 | DOL-1204-W05MC | 6025904 | $\rightarrow$ K-256 |
| CS84-N3612 | 1028231 | $\rightarrow \mathrm{C}-102$ | DOL-1204-W05M | 6009867 | $\rightarrow$ K-255 |
| CS84-P1112 | 1028226 | $\rightarrow$ C-102 | DOL-1204-W10MC | 6025905 | $\rightarrow$ K-256 |
| CS84-P3612 | 1028227 | $\rightarrow \mathrm{C}-102$ | DOL-1204-W10M | 6010541 | $\rightarrow$ K-255 |
| CSM-WN11122P | 1067293 | $\rightarrow \mathrm{C}-96$ | DOL-1204-W15M | 6036474 | $\rightarrow$ K-256 |
| CSM-WP11122P | 1067291 | $\rightarrow \mathrm{C}-96$ | DOL-1204-W20M | 6033559 | $\rightarrow$ K-256 |
| CSM-WP117A2P | 1067294 | $\rightarrow \mathrm{C}-96$ | DOL-1205-G02MC | 6025906 | $\rightarrow$ K-256 |
| DOL-0803-G01MC | 6036455 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G02M | 6008899 | $\rightarrow \mathrm{K}-256$ |
| DOL-0803-G02MC | 6025888 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G05MAC | 6036384 | $\rightarrow$ K-256 |
| DOL-0803-G02M | 6010785 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G05MC | 6025907 | $\rightarrow$ K-256 |
| DOL-0803-G03MC | 6038991 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G05M | 6009868 | $\rightarrow \mathrm{K}-256$ |
| DOL-0803-G05MC | 6025889 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G10MAC | 6036385 | $\rightarrow$ K-256 |
| D0L-0803-G05M | 6022009 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G10MC | 6025908 | $\rightarrow$ K-256 |
| DOL-0803-G10MC | 6025890 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G10M | 6010544 | $\rightarrow$ K-256 |
| DOL-0803-G10M | 6022011 | $\rightarrow \mathrm{K}-254$ | DOL-1205-G20MAC | 6036386 | $\rightarrow$ K-256 |
| DOL-0803-G15M | 6036472 | $\rightarrow \mathrm{K}-254$ | DOL-1205-W02MC | 6025909 | $\rightarrow$ K-256 |
| DOL-0803-G20MC | 6036456 | $\rightarrow \mathrm{K}-254$ | DOL-1205-W02M | 6008900 | $\rightarrow$ K-256 |
| DOL-0803-W02MC | 6025891 | $\rightarrow \mathrm{K}-254$ | DOL-1205-W05MC | 6025910 | $\rightarrow$ K-256 |


| Type | Part no . | Page |
| :---: | :---: | :---: |
| DOL-1205-W05M | 6009869 | $\rightarrow$ K-256 |
| DOL-1205-W10MC | 6025911 | $\rightarrow$ K-256 |
| DOL-1205-W10M | 6010542 | $\rightarrow$ K-256 |
| DOL-1208-G02MAH1 | 6032448 | $\rightarrow$ K-257 |
| DOL-1208-G02MA | 6020633 | $\rightarrow$ K-257 |
| DOL-1208-G02MC | 6035620 | $\rightarrow$ K-257 |
| DOL-1208-G05MA | 6020993 | $\rightarrow$ K-257 |
| DOL-1208-G05MC | 6035621 | $\rightarrow$ K-257 |
| DOL-1208-G10MC | 6035622 | $\rightarrow$ K-257 |
| DOL-1208-G15MC | 6038559 | $\rightarrow$ K-257 |
| DOL-1208-G20MC | 6038560 | $\rightarrow$ K-257 |
| DOL-1208-W02MAS01 | 6029224 | $\rightarrow$ K-257 |
| DOL-1208-W02MA | 6020992 | $\rightarrow$ K-257 |
| DOL-1208-W02MC | 6035623 | $\rightarrow$ K-257 |
| DOL-1208-W05MA | 6021033 | $\rightarrow \mathrm{K}-257$ |
| DOL-1208-W05MC | 6035624 | $\rightarrow$ K-257 |
| DOL-1212-W05MAS02 | 6044109 | $\rightarrow$ K-257 |
| DOL1212-G05MAS02 | 6042754 | $\rightarrow \mathrm{K}-257$ |
| DSL-1212-G05MAS02 | 6045234 | $\rightarrow \mathrm{K}-258$ |
| KT10W-2N1115 | 1028233 | $\rightarrow$ B-82 |
| KT10W-2N2115 | 1029071 | $\rightarrow$ B-82 |
| KT10W-2P1115 | 1028232 | $\rightarrow$ B-82 |
| KT10W-2P2115 | 1029070 | $\rightarrow$ B-82 |
| KT3L-N3216 | 1026245 | $\rightarrow$ B-40 |
| KT3L-P3216 | 1026244 | $\rightarrow$ B-40 |
| KT5G-2N1111 | 1015981 | $\rightarrow$ B-47 |
| KT5G-2N1121 | 1015983 | $\rightarrow$ B-47 |
| KT5G-2N1151 | 1016385 | $\rightarrow$ B-47 |
| KT5G-2N1211 | 1015985 | $\rightarrow$ B-47 |
| KT5G-2N1251 | 1022582 | $\rightarrow$ B-47 |
| KT5G-2N1311 | 1015988 | $\rightarrow$ B-47 |
| KT5G-2N1351 | 1016728 | $\rightarrow$ B-47 |
| KT5G-2N2111 | 1015990 | $\rightarrow$ B-47 |
| KT5G-2N2211 | 1015991 | $\rightarrow$ B-47 |
| KT5G-2N2311 | 1015992 | $\rightarrow$ B-47 |
| KT5G-2N2351 | 1018068 | $\rightarrow$ B-47 |
| KT5G-2P1111 | 1015993 | $\rightarrow$ B-47 |
| KT5G-2P1121 | 1015997 | $\rightarrow$ B-47 |
| KT5G-2P1151 | 1016195 | $\rightarrow$ B-47 |
| KT5G-2P1211 | 1015999 | $\rightarrow$ B-47 |
| KT5G-2P1221 | 1016001 | $\rightarrow$ B-47 |
| KT5G-2P1251 | 1016196 | $\rightarrow$ B-47 |
| KT5G-2P1311 | 1016003 | $\rightarrow$ B-47 |
| KT5G-2P1321 | 1016005 | $\rightarrow$ B-47 |
| KT5G-2P1351 | 1016197 | $\rightarrow$ B-47 |
| KT5G-2P2111 | 1016008 | $\rightarrow$ B-47 |
| KT5G-2P2121 | 1016009 | $\rightarrow$ B-47 |
| KT5G-2P2151 | 1017809 | $\rightarrow$ B-47 |
| KT5G-2P2211 | 1016010 | $\rightarrow$ B-47 |
| KT5G-2P2221 | 1016011 | $\rightarrow$ B-47 |
| KT5G-2P2311 | 1016012 | $\rightarrow$ B-47 |
| KT5G-2P2321 | 1016013 | $\rightarrow$ B-47 |
| KT5G-2P2351 | 1018067 | $\rightarrow$ B-47 |
| KT5M-2N1111 | 1048489 | $\rightarrow$ B-46 |
| KT5M-2P1151 | 1044400 | $\rightarrow$ B-46 |
| KT5RG-2N1116 | 1027394 | $\rightarrow$ B-48 |
| KT5RG-2P1116 | 1027393 | $\rightarrow$ B-48 |
| KT5RG-2P1126 | 1027396 | $\rightarrow$ B-48 |


| Type | Part no . | Page |
| :---: | :---: | :---: |
| KT5W-2N1113 | 1016630 | $\rightarrow$ B-48 |
| KT5W-2N1116D | 1026540 | $\rightarrow$ B-48 |
| KT5W-2N1116 | 1018045 | $\rightarrow$ B-49 |
| KT5W-2N1126D | 1026582 | $\rightarrow$ B-49 |
| KT5W-2N1213 | 1016716 | $\rightarrow$ B-48 |
| KT5W-2N1216D | 1026580 | $\rightarrow$ B-48 |
| KT5W-2N1216 | 1019022 | $\rightarrow$ B-49 |
| KT5W-2N1316D | 1026581 | $\rightarrow$ B-48 |
| KT5W-2N1316 | 1022678 | $\rightarrow$ B-49 |
| KT5W-2N2113 | 1018042 | $\rightarrow$ B-48 |
| KT5W-2N2116D | 1026583 | $\rightarrow$ B-49 |
| KT5W-2P1113 | 1016629 | $\rightarrow$ B-48 |
| KT5W-2P1116D | 1026538 | $\rightarrow$ B-48 |
| KT5W-2P1116 | 1018044 | $\rightarrow$ B-49 |
| KT5W-2P1123 | 1017810 | $\rightarrow$ B-48 |
| KT5W-2P1126D | 1026579 | $\rightarrow$ B-48 |
| KT5W-2P1126 | 1018587 | $\rightarrow$ B-49 |
| KT5W-2P1213 | 1016715 | $\rightarrow$ B-48 |
| KT5W-2P1216D | 1026577 | $\rightarrow$ B-48 |
| KT5W-2P1216 | 1018586 | $\rightarrow$ B-49 |
| KT5W-2P1316D | 1026578 | $\rightarrow$ B-48 |
| KT5W-2P1316 | 1018961 | $\rightarrow$ B-49 |
| KT5W-2P2113 | 1018043 | $\rightarrow$ B-48 |
| KT5W-2P2116D | 1026584 | $\rightarrow$ B-48 |
| KT5W-2P2116 | 1022312 | $\rightarrow$ B-49 |
| KT5W-2P2216 | 1019020 | $\rightarrow$ B-48 |
| KT5W-2P2323 | 1022165 | $\rightarrow$ B-48 |
| KT6W-2N5116 | 1046010 | $\rightarrow$ B-68 |
| KT6W-2N6116 | 1046012 | $\rightarrow$ B-68 |
| KT6W-2P5116 | 1046013 | $\rightarrow$ B-68 |
| KT6W-2P6116 | 1046014 | $\rightarrow$ B-68 |
| KT8L-N3656 | 1041263 | $\rightarrow$ B-74 |
| KT8L-N3756 | 1041352 | $\rightarrow$ B-74 |
| KT8L-P3656 | 1041262 | $\rightarrow$ B-74 |
| KT8L-P3756 | 1041351 | $\rightarrow$ B-74 |
| KT8W-N111C | 1028223 | $\rightarrow$ B-74 |
| KT8W-P111C | 1027919 | $\rightarrow$ B-74 |
| KT8W-P121C | 1043689 | $\rightarrow$ B-74 |
| KTL5G-2N11 | 1016295 | $\rightarrow$ B-60 |
| KTL5G-2N51 | 1016951 | $\rightarrow$ B-60 |
| KTL5G-2P11 | 1016294 | $\rightarrow$ B-60 |
| KTL5G-2P14 | 1022091 | $\rightarrow$ B-60 |
| KTL5G-2P24 | 1019162 | $\rightarrow$ B-60 |
| KTL5G-2P51 | 1016950 | $\rightarrow$ B-60 |
| KTL5W-2N13 | 1019661 | $\rightarrow$ B-60 |
| KTL5W-2N16 | 1025995 | $\rightarrow$ B-60 |
| KTL5W-2P13 | 1027562 | $\rightarrow$ B-60 |
| KTL5W-2P16 | 1026006 | $\rightarrow$ B-60 |
| KTL5W-2P23 | 1019551 | $\rightarrow$ B-60 |
| KTM-MB31111P | 1062202 | $\rightarrow$ B-26 |
| KTM-MB31112P | 1070053 | $\rightarrow$ B-26 |
| KTM-MB31191P | 1062203 | $\rightarrow$ B-26 |
| KTM-MB8A191P | 1066885 | $\rightarrow$ B-26 |
| KTM-MN31181P | 1071947 | $\rightarrow$ B-32 |
| KTM-MP11181P | 1072473 | $\rightarrow$ B-32 |
| KTM-MP31181P | 1065756 | $\rightarrow$ B-32 |
| KTM-MP31182P | 1070490 | $\rightarrow$ B-32 |
| KTM-MP317A1P | 1071482 | $\rightarrow$ B-32 |


| Type | Part no. | Page | Type | Part no. | Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| KTM-WN11181P | 1062200 | $\rightarrow$ B-32 | LUTM-UP81162P | 1067295 | $\rightarrow$ D-116 |
| KTM-WN11182P | 1062150 | $\rightarrow$ B-32 | LUTM-UP817A2P | 1067297 | $\rightarrow$ D-116 |
| KTM-WN117A1P | 1061787 | $\rightarrow$ B-32 | ML20M-P1211 | 1044675 | $\rightarrow$ 1-234 |
| KTM-WN1A182V | 1062148 | $\rightarrow$ B-32 | OBJ-210 | 2010945 | $\rightarrow \mathrm{K}-249$ |
| KTM-WP11181P | 1062199 | $\rightarrow$ B-32 | OBJ-211 | 1004936 | $\rightarrow \mathrm{K}-249$ |
| KTM-WP11182P | 1062201 | $\rightarrow$ B-32 | OBJ-212 | 1011506 | $\rightarrow \mathrm{K}-249$ |
| KTM-WP11282P | 1072002 | $\rightarrow$ B-32 | OBJ-LUT3-10 | 2016348 | $\rightarrow \mathrm{K}-249$ |
| KTM-WP117A1P | 1061770 | $\rightarrow$ B-32 | OBJ-LUT3-20 | 2016349 | $\rightarrow \mathrm{K}-249$ |
| KTM-WP1A182V | 1052956 | $\rightarrow$ B-32 | OBJ-LUT3-50 | 2016350 | $\rightarrow \mathrm{K}-249$ |
| KTM-WP1A7A2V | 1062147 | $\rightarrow$ B-32 | OPR20G-RB111517 | 1065685 | $\rightarrow$ E-152 |
| LBSA32900 | 7020040 | $\rightarrow \mathrm{K}-250$ | OPR20G-RB317537A90 | 1072052 | $\rightarrow$ E-152 |
| LBSAA23900 | 7020103 | $\rightarrow$ K-249 | OPR20G-RB317537 | 1068822 | $\rightarrow$ E-152 |
| LBSAT32900 | 7020036 | $\rightarrow$ K-249 | OPR20G-RB417537 | 1068823 | $\rightarrow$ E-152 |
| LBSF32900 | 7020038 | $\rightarrow$ K-250 | OPR20G-RB517537A01 | 1072051 | $\rightarrow$ E-152 |
| LBSM12900 | 7020054 | $\rightarrow$ K-249 | REF-AX-001 | 2049250 | $\rightarrow \mathrm{K}-249$ |
| LBSP16900 | 7020044 | $\rightarrow \mathrm{K}-250$ | REF-AX-002 | 2049249 | $\rightarrow \mathrm{K}-249$ |
| LBSR16900 | 7020050 | $\rightarrow$ K-250 | REF-AX-004 | 2062695 | $\rightarrow \mathrm{K}-249$ |
| LBSR32900 | 7020042 | $\rightarrow$ K-250 | REF-AX-005 | 2069161 | $\rightarrow \mathrm{K}-249$ |
| LBSR40900 | 7020052 | $\rightarrow \mathrm{K}-250$ | REF-AX-007 | 2080183 | $\rightarrow \mathrm{K}-249$ |
| LBST32900 | 7020046 | $\rightarrow$ K-249 | RS10-M111 | 1060116 | $\rightarrow$ G-201 |
| LBSTA325000 | 7022348 | $\rightarrow$ K-249 | RS25-WF334000 | 1062005 | $\rightarrow$ G-208 |
| LBSTA32900 | 7020048 | $\rightarrow$ K-249 | RS25-WL334000 | 1061571 | $\rightarrow$ G-208 |
| LISA32900 | 7020039 | $\rightarrow$ K-250 | RS25-optical sensor head | - | $\rightarrow$ G-208 |
| LISAA23900 | 7020102 | $\rightarrow$ K-250 | SICK Memory Stick | 1064290 | $\rightarrow \mathrm{K}-254$ |
| LISAT32900 | 7020035 | $\rightarrow$ K-250 | SiLink2 Master | 1061790 | $\rightarrow \mathrm{K}-254$ |
| LISF32900 | 7020037 | $\rightarrow$ K-250 | SSL-1204-G02ME90 | 6045222 | $\rightarrow \mathrm{K}-258$ |
| LISM12900 | 7020053 | $\rightarrow \mathrm{K}-250$ | SSL-1204-G05ME90 | 6045277 | $\rightarrow \mathrm{K}-258$ |
| LISP16900 | 7020043 | $\rightarrow \mathrm{K}-250$ | SSL-1204-G10ME90 | 6045279 | $\rightarrow \mathrm{K}-258$ |
| LISR16900 | 7020049 | $\rightarrow$ K-250 | SSL-2J04-G02ME | 6034414 | $\rightarrow \mathrm{K}-257$ |
| LISR32900 | 7020041 | $\rightarrow$ K-250 | SSL-2J04-G05ME | 6035389 | $\rightarrow \mathrm{K}-257$ |
| LSSF32500 | 7122528 | $\rightarrow$ K-249 | SSL-2J04-G10ME | 6030928 | $\rightarrow \mathrm{K}-257$ |
| LUM-FT | 1004460 | $\rightarrow$ K-250 | SSL-2J04-G20ME | 6036158 | $\rightarrow$ K-257 |
| LUM-KLK | 1002959 | $\rightarrow$ K-250 | SSL-2J04-G25ME | 6033555 | $\rightarrow \mathrm{K}-257$ |
| LUT3-610 | 1015396 | $\rightarrow$ D-122 | UFN3-70B413 | 6049678 | $\rightarrow$ F-172 |
| LUT3-620 | 1015397 | $\rightarrow$ D-122 | UFN3-70N415 | 6049680 | $\rightarrow$ F-172 |
| LUT3-650 | 1015398 | $\rightarrow$ D-122 | UFN3-70P415 | 6049679 | $\rightarrow$ F-172 |
| LUT8U-11101 | 1046711 | $\rightarrow$ D-128 | WF120-40B410 | 6028435 | $\rightarrow$ F-177 |
| LUT8U-11201 | 1047042 | $\rightarrow$ D-128 | WF120-40B416 | 6028456 | $\rightarrow$ F-177 |
| LUT8U-11301 | 1047043 | $\rightarrow$ D-128 | WF120-60B410 | 6028442 | $\rightarrow$ F-177 |
| LUT8U-11311 | 1047045 | $\rightarrow$ D-128 | WF120-60B416 | 6028463 | $\rightarrow$ F-177 |
| LUT8U-11321 | 1047046 | $\rightarrow$ D-128 | WF120-95B410 | 6028449 | $\rightarrow$ F-177 |
| LUT8U-11331 | 1047047 | $\rightarrow$ D-128 | WF120-95B416 | 6028470 | $\rightarrow$ F-177 |
| LUT8U-11401 | 1047044 | $\rightarrow$ D-128 | WF15-40B410 | 6028430 | $\rightarrow$ F-176 |
| LUT8U-11701 | 1047048 | $\rightarrow$ D-128 | WF15-40B416 | 6028452 | $\rightarrow$ F-176 |
| LUT9B-11626 | 1047056 | $\rightarrow$ D-135 | WF15-60B410 | 6028438 | $\rightarrow$ F-176 |
| LUT9U-11106 | 1047049 | $\rightarrow$ D-134 | WF15-60B416 | 6028459 | $\rightarrow$ F-176 |
| LUT9U-11206 | 1047050 | $\rightarrow$ D-134 | WF15-95B410 | 6028445 | $\rightarrow$ F-176 |
| LUT9U-11306 | 1046712 | $\rightarrow$ D-134 | WF15-95B416 | 6028466 | $\rightarrow$ F-176 |
| LUT9U-11316 | 1047052 | $\rightarrow$ D-134 | WF2-40B410 | 6028428 | $\rightarrow$ F-176 |
| LUT9U-11326 | 1047053 | $\rightarrow$ D-134 | WF2-40B416 | 6028450 | $\rightarrow$ F-176 |
| LUT9U-11336 | 1047054 | $\rightarrow$ D-134 | WF2-60B410 | 6028436 | $\rightarrow$ F-176 |
| LUT9U-11406 | 1047051 | $\rightarrow$ D-134 | WF2-60B416 | 6028457 | $\rightarrow$ F-176 |
| LUT9U-11606 | 1047414 | $\rightarrow$ D-135 | WF2-95B410 | 6028443 | $\rightarrow$ F-176 |
| LUT9U-12206 | 1046749 | $\rightarrow$ D-134 | WF2-95B416 | 6028464 | $\rightarrow$ F-176 |
| LUT9U-12306 | 1047055 | $\rightarrow$ D-134 | WF30-40B410 | 6028431 | $\rightarrow$ F-176 |
| LUT9U-P120L | 1046188 | $\rightarrow$ D-134 | WF30-40B416 | 6028453 | $\rightarrow$ F-176 |
| LUT9U-P130L | 1045606 | $\rightarrow$ D-134 | WF30-60B410 | 6028439 | $\rightarrow$ F-176 |
| LUTM-UN81162P | 1067296 | $\rightarrow$ D-116 | WF30-60B416 | 6028460 | $\rightarrow$ F-176 |


| Type | Part no. | Page |
| :---: | :---: | :---: |
| WF30-95B410 | 6028446 | $\rightarrow$ F-176 |
| WF30-95B416 | 6028467 | $\rightarrow$ F-176 |
| WF5-40B410 | 6028429 | $\rightarrow$ F-176 |
| WF5-40B416 | 6028451 | $\rightarrow$ F-176 |
| WF5-60B410 | 6028437 | $\rightarrow$ F-176 |
| WF5-60B416 | 6028458 | $\rightarrow$ F-176 |
| WF5-95B410 | 6028444 | $\rightarrow$ F-176 |
| WF5-95B416 | 6028465 | $\rightarrow$ F-176 |
| WF50-40B410 | 6028432 | $\rightarrow$ F-177 |
| WF50-40B416 | 6028454 | $\rightarrow$ F-177 |
| WF50-60B410 | 6028440 | $\rightarrow$ F-177 |
| WF50-60B416 | 6028461 | $\rightarrow$ F-177 |
| WF50-95B410 | 6028447 | $\rightarrow$ F-177 |
| WF50-95B416 | 6028468 | $\rightarrow$ F-177 |
| WF80-40B410 | 6028433 | $\rightarrow$ F-177 |
| WF80-40B416 | 6028455 | $\rightarrow$ F-177 |
| WF80-60B410 | 6028441 | $\rightarrow$ F-177 |
| WF80-60B416 | 6028462 | $\rightarrow$ F-177 |
| WF80-95B410 | 6028448 | $\rightarrow$ F-177 |
| WF80-95B416 | 6028469 | $\rightarrow$ F-177 |
| WFL120-40B416 | 6036827 | $\rightarrow$ F-185 |
| WFL120-60B416 | 6036834 | $\rightarrow$ F-185 |
| WFL120-95B416 | 6036841 | $\rightarrow$ F-185 |
| WFL15-40B416 | 6036823 | $\rightarrow$ F-184 |
| WFL15-60B416 | 6036830 | $\rightarrow$ F-184 |
| WFL15-95B416 | 6036837 | $\rightarrow$ F-184 |
| WFL2-40B416 | 6036821 | $\rightarrow$ F-184 |
| WFL2-60B416 | 6036828 | $\rightarrow$ F-184 |
| WFL2-95B416 | 6036835 | $\rightarrow$ F-184 |
| WFL30-40B416 | 6036824 | $\rightarrow$ F-184 |
| WFL30-60B416 | 6036831 | $\rightarrow$ F-184 |
| WFL30-95B416 | 6036838 | $\rightarrow$ F-184 |
| WFL5-40B416 | 6036822 | $\rightarrow$ F-184 |
| WFL5-60B416 | 6036829 | $\rightarrow$ F-184 |
| WFL5-95B416 | 6036836 | $\rightarrow$ F-184 |
| WFL50-40B416 | 6036825 | $\rightarrow$ F-184 |
| WFL50-60B416 | 6036832 | $\rightarrow$ F-184 |
| WFL50-95B416 | 6036839 | $\rightarrow$ F-184 |
| WFL80-40B416 | 6036826 | $\rightarrow$ F-185 |
| WFL80-60B416 | 6036833 | $\rightarrow$ F-185 |
| WFL80-95B416 | 6036840 | $\rightarrow$ F-185 |
| WFM120-120N311 | 6037835 | $\rightarrow$ F-190 |
| WFM120-120N321 | 6037834 | $\rightarrow$ F-190 |
| WFM120-120P311 | 6037833 | $\rightarrow$ F-190 |
| WFM120-120P321 | 6037832 | $\rightarrow$ F-190 |
| WFM180-120N311 | 6037839 | $\rightarrow$ F-191 |
| WFM180-120N321 | 6037838 | $\rightarrow$ F-191 |
| WFM180-120P311 | 6037837 | $\rightarrow$ F-191 |
| WFM180-120P321 | 6037836 | $\rightarrow$ F-191 |
| WFM30-40N311 | 6037822 | $\rightarrow$ F-190 |
| WFM30-40N321 | 6037821 | $\rightarrow$ F-190 |
| WFM30-40P121 | 6037823 | $\rightarrow$ F-190 |
| WFM30-40P311 | 6037820 | $\rightarrow$ F-190 |
| WFM30-40P321 | 6037819 | $\rightarrow$ F-190 |
| WFM50-60N311 | 6037827 | $\rightarrow$ F-190 |
| WFM50-60N321 | 6037826 | $\rightarrow$ F-190 |
| WFM50-60P311 | 6037825 | $\rightarrow$ F-190 |
| WFM50-60P321 | 6037824 | $\rightarrow$ F-190 |


| Type | Part no. | Page |
| :---: | :---: | :--- |
| WFM80-60N311 | 6037831 | $\rightarrow$ F-190 |
| WFM80-60N321 | 6037830 | $\rightarrow$ F-190 |
| WFM80-60P311 | 6037829 | $\rightarrow$ F-190 |
| WFM80-6OP321 | 6037828 | $\rightarrow$ F-190 |
| WFS3-4ON415 | 6043920 | $\rightarrow$ F-166 |
| WFS3-4ON41C | 6053766 | $\rightarrow$ F-166 |
| WFS3-4OP415 | 6043919 | $\rightarrow$ F-166 |
| WFS3-4OP41C | 6053765 | $\rightarrow$ F-166 |

## SICK AT A GLANCE

SICK is a leading manufacturer of intelligent sensors and sensor solutions for industrial applications. With almost 7,000 employees and over 50 subsidiaries and equity investments as well as numerous representative offices worldwide, we are always close to our customers. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in various industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services round out our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

## Worldwide presence:

Australia, Austria, Belgium, Brazil, Canada, Chile, China, Czech Republic, Denmark, Finland, France, Germany, Great Britain, Hungary, India, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, New Zealand, Norway, Poland, Romania, Russia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, United Arab Emirates, USA, Vietnam.

Detailed addresses and additional representatives $\rightarrow$ www.sick.com


[^0]:    $\rightarrow$ www.sick.com/de/en/KTM_Core
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^1]:    $\rightarrow$ www.sick.com/de/en/KTM_Prime
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^2]:    ${ }^{1)}$ Limit values: DC $12 \mathrm{~V}(-10 \%)$... DC $24 \mathrm{~V}(+20 \%)$. Operation in short-circuit protected network max. 8 A .
    ${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
    ${ }^{3)}$ Without load.
    ${ }^{4)}$ With light/dark ratio 1:1.
    ${ }^{5)}$ Signal transit time with resistive load.
    ${ }^{6)}$ At supply voltage $>24 \mathrm{~V}, \mathrm{I}_{\max }=30 \mathrm{~mA}$. $\mathrm{I}_{\max }$ is consumption count of all $\mathrm{Q}_{n}$.

[^3]:    $\rightarrow$ For additional accessories, please see page K-240

[^4]:    $\rightarrow$ For additional accessories, please see page K-240

[^5]:    ${ }^{1)}$ From front edge of lens.
    ${ }^{2)}$ In relation to long side of housing.

[^6]:    ${ }^{1)}$ From front edge of lens.
    ${ }^{2}$ ) In relation to long side of housing.

[^7]:    ${ }^{1)}$ From front edge of lens.
    ${ }^{2}$ ) In relation to long side of housing.

[^8]:    $\rightarrow$ For additional accessories, please see page K-240

[^9]:    $\rightarrow$ www.sick.com/de/en/KT5
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^10]:    (1) M5 threaded mounting hole, 5.5 mm deep
    (2) Fiber-optic adapter (M12 $\times 1$ internal thread)
    (3) Connector M12 (rotatable up to $90^{\circ}$ )

[^11]:    $\rightarrow$ For additional accessories, please see page K-240

[^12]:    $\rightarrow$ www.sick.com/de/en/KT6
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much

[^13]:    $\rightarrow$ For additional accessories, please see page K-240

[^14]:    $\rightarrow$ www.sick.com/de/en/KT10

[^15]:    $\rightarrow$ For additional accessories, please see page K-240

[^16]:    $\rightarrow$ www.sick.com/de/en/CSM

[^17]:    $\rightarrow$ For additional accessories, please see page K-240

[^18]:    $\rightarrow$ www.sick.com/de/en/LUTM
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^19]:    ${ }^{1)}$ Limit values: DC $12 \mathrm{~V}(-10 \%)$... DC $24 \mathrm{~V}(+20 \%)$. Operation in short-circuit protected network max. 8 A .
    ${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
    ${ }^{3}$ ) Without load.
    ${ }^{4}$ ) With light/dark ratio 1:1.
    ${ }^{5}$ ) Signal transit time with resistive load.
    ${ }^{6)}$ At supply voltage $>24 \mathrm{~V}, \mathrm{I}_{\max }=30 \mathrm{~mA}$. $I_{\max }$ is consumption count of all $\mathrm{Q}_{\mathrm{n}}$.

[^20]:    (1) Optical axis receiver
    (2) Optical axis sender
    (3) Fixing hole M3
    (4) Cable with male connector

[^21]:    $\rightarrow$ For additional accessories, please see page K-240

[^22]:    $\rightarrow$ www.sick.com/de/en/LUT3
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^23]:    $\rightarrow$ www.sick.com/de/en/LUT8
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^24]:    $\rightarrow$ For additional accessories, please see page K-240

[^25]:    $\rightarrow$ www.sick.com/de/en/LUT9
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much

[^26]:    $\rightarrow$ www.sick.com/de/en/Glare
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^27]:    ${ }^{1)}$ Default: Teach-in.
    ${ }^{2)}$ Default: Keylock.

[^28]:    $\rightarrow$ For additional accessories, please see page K-240

[^29]:    $\rightarrow$ www.sick.com/de/en/WFS

[^30]:    ${ }^{1)}$ Limit values, reverse-polarity protected, operation in short-circuit protected network: max. 8 A .
    ${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
    ${ }^{3}$ ) Without load.
    ${ }^{4)}$ With light/dark ratio 1:1.
    ${ }^{5)}$ With light/dark ratio 1:1, typical, during teach-in 6 kHz .
    ${ }^{6}$ ) Signal transit time with resistive load.

[^31]:    (1) Optical axis

[^32]:    $\rightarrow$ For additional accessories, please see page K-240

[^33]:    $\rightarrow$ www.sick.com/de/en/UF
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much

[^34]:    ${ }^{1)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.
    ${ }^{2)}$ The UFN complies with the Radio Safety Requirements (EMC) for the indus-trial sector (Radio Safety Class A). It may cause radio interference if used in residential areas.

[^35]:    $\rightarrow$ For additional accessories, please see page K-240

[^36]:    $\rightarrow$ www.sick.com/de/en/WF
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^37]:    ${ }^{1)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.

[^38]:    ${ }^{1)}$ Minimum detectable object.

[^39]:    ${ }^{1)}$ Minimum detectable object.

[^40]:    $\rightarrow$ For additional accessories, please see page K-240

[^41]:    $\rightarrow$ www.sick.com/de/en/WFL
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^42]:    (1) Optical axis
    (2) Mounting hole, $\varnothing 4.2 \mathrm{~mm}$
    (3) WFL50/80/120 only

[^43]:    $\rightarrow$ www.sick.com/de/en/WFM
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^44]:    ${ }^{1)}$ Do not bend below $0{ }^{\circ} \mathrm{C}$.

[^45]:    ${ }^{1)}$ Minimum detectable object.

[^46]:    ${ }^{1)}$ Signal transit time with resistive load.

[^47]:    $\rightarrow$ For additional accessories, please see page K-240

[^48]:    $\rightarrow$ For additional accessories, please see page K-240

[^49]:    $\rightarrow$ www.sick.com/de/en/Ax20
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^50]:    ${ }^{1)}$ With respect to sensing distance.
    ${ }^{2)}$ Active when object detected.

[^51]:    $\rightarrow$ www.sick.com/de/en/ML20
    For more information, just enter the link or scan the QR code and get direct access to technical data, CAD design models, operating instructions, software, application examples and much more.

[^52]:    ${ }^{1)}$ Limit values; operation in short-circuit protected network max. 8 A .
    ${ }^{2)}$ May not exceed or fall below $U_{v}$ tolerances.
    ${ }^{3}$ ) Without load.
    ${ }^{4)}$ Detailed description of the status output in operating manual.
    ${ }^{5}$ ) Sum $\mathrm{I}_{\text {out }}=\mathrm{Q}+\mathrm{Q}$ status.
    ${ }^{6)}$ Fade-out of identical areas.

[^53]:    $\rightarrow$ For additional accessories, please see page K-240

[^54]:    Fig. Sensing range tolerance

