MC74LCX244

Low－Voltage CMOS Octal Buffer

With 5 V－Tolerant Inputs and Outputs （3－State，Non－Inverting）

The MC74LCX244 is a high performance，non－inverting octal buffer operating from a 2.3 to 3.6 V supply．High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance．A V_{I} specification of 5.5 V allows MC74LCX244 inputs to be safely driven from 5 V devices．The MC74LCX244 is suitable for memory address driving and all TTL level bus oriented transceiver applications．

Current drive capability is 24 mA at the outputs．The Output Enable $(\overline{\mathrm{OE}})$ input，when HIGH ，disables the output by placing them in a HIGH Z condition．

Features

－Designed for 2.3 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
－ 5 V Tolerant－Interface Capability With 5 V TTL Logic
－Supports Live Insertion and Withdrawal
－I ${ }_{\text {OFF }}$ Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
－LVTTL Compatible
－LVCMOS Compatible
－ 24 mA Balanced Output Sink and Source Capability
－Near Zero Static Supply Current in All Three Logic States（10 $\mu \mathrm{A}$ ） Substantially Reduces System Power Requirements
－Latchup Performance Exceeds 500 mA
－ESD Performance：
－Human Body Model＞2000 V
－Machine Model＞200 V
－NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements；AEC－Q100 Qualified and PPAP Capable
－These Devices are $\mathrm{Pb}-$ Free，Halogen Free／BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http：／／onsemi．com

MARKING DIAGRAMS

20日月日日月月日日日果

1日昭昭时时
SOIC－20 WB

TSSOP－20

QFN2O

A	$=$ Assembly Location
L，WL	$=$ Wafer Lot
Y，YY	$=$ Year
$W, W W$	$=$ Work Week
Gor	$=$ Pb－Free Package

（Note：Microdot may be in either location）
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet．

Figure 1. Pinouts: 20-Lead (Top View)

PIN NAMES

PINS	FUNCTION
$\mathrm{n} \overline{\mathrm{OE}}$	Output Enable Inputs
$1 \mathrm{Dn}, 2 \mathrm{Dn}$	Data Inputs
1On, 2On	3-State Outputs

Figure 2. Logic Diagram

TRUTH TABLE

INPUTS		OUTPUTS
10E 2OE	1Dn 2Dn	10n, 2On
L	L	L
L	H	H
H	X	Z

H = High Voltage Level
L = Low Voltage Level
Z = High Impedance State
X = High or Low Voltage Level and Transitions are Acceptable
For Icc reasons, DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
V_{1}	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
V_{O}	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq+7.0$	Output in 3-State	V
		$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	Output in HIGH or LOW State (Note 1)	V
I_{IK}	DC Input Diode Current	-50	$V_{1}<$ GND	mA
$\mathrm{l}_{\text {OK }}$	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
		+50	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
10	DC Output Source/Sink Current	± 50		mA
ICC	DC Supply Current Per Supply Pin	± 100		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current Per Ground Pin	± 100		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150		${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	$\mathrm{T}_{\mathrm{L}}=260$		${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	$\mathrm{T}_{\mathrm{J}}=150$		${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 2)	$\theta_{\mathrm{JA}}=140$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Io absolute maximum rating must be observed.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Units
V_{CC}	Supply Voltage Operating Data Retention Only	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.5,3.3 \\ & 2.5,3.3 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V
V	Input Voltage	0		5.5	V
V_{O}	Output Voltage HIGH or LOW State 3-State	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 5.5 \end{aligned}$	V
$\mathrm{IOH}^{\text {a }}$	HIGH Level Output Current $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & -24 \\ & -12 \end{aligned}$	mA
lOL	LOW Level Output Current $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}-3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}-3.0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 24 \\ & 12 \end{aligned}$	mA
T_{A}	Operating Free-Air Temperature	-55		+125	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0		10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Units
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 3)	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$	1.7		V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		
V_{IL}	LOW Level Input Voltage (Note 3)	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$		0.7	V
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	
V_{OH}	HIGH Level Output Voltage	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$	1.8		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.2		
VoL	LOW Level Output Voltage	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.6	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.55	
$\mathrm{I}_{\text {Oz }}$	3-State Output Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } 5.5 \mathrm{~V} \end{gathered}$		± 5	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
1 N	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		± 5	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in I CC per Input	$2.3 \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. These values of V_{1} are used to test $D C$ electrical characteristics only.

AC CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{R}_{\mathrm{L}}=500 \Omega\right)$

Symbol	Parameter	Waveform	Limits						Units
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$						
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay Input to Output	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PzH}} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.4 \end{aligned}$	ns
toshL tosLh	Output-to-Output Skew (Note 4)			$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$					ns

4. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tosHL) or LOW-to-HIGH (tosLh); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Dynamic LOW Peak Voltage (Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$		V
$\mathrm{V}_{\text {OLV }}$	Dynamic LOW Valley Voltage (Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline-0.8 \\ & -0.6 \end{aligned}$		V

5. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

MC74LCX244

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	pF	
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES
$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
Figure 3. AC Waveforms

	$\mathrm{V}_{\mathbf{C C}}$		
Symbol	$\mathbf{3 . 3} \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}$	$\mathbf{2 . 7} \mathbf{V}$	$\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2} \mathbf{V}$
Vmi^{2}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
Vmo^{2}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{HZ}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{LZ}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-015 \mathrm{~V}$

TEST	SWITCH
$t_{\text {PLH }}, t_{\text {PHL }}$	Open
$t_{\text {PZL }}, t_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$
	6 V at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
Open Collector/Drain $t_{\text {PLH }}$ and $t_{\text {PHL }}$	6 V
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ or equivalent (includes jig and probe capacitance)
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 4. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74LCX244DWG	SOIC-20 WB (Pb-Free)	38 Units / Rail
MC74LCX244DWR2G	SOIC-20 WB (Pb-Free)	$1000 /$ Tape \& Reel
MC74LCX244DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LCX244DTR2G	TSSOP-20 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74LCX244DTR2G*	TSSOP-20 (Pb-Free)	$2500 /$ Tape \& Reel
MC74LCX244MNTWG	QFN20 (Pb-Free)	3000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MC74LCX244

PACKAGE DIMENSIONS

SOIC-20 WB
CASE 751D-05
ISSUE G

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS
2. INTERPRET DIMENSIONS AND TOLERANCES

INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994 .
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

MC74LCX244

PACKAGE DIMENSIONS

TSSOP-20
CASE 948E-02
ISSUE C

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74LCX244

PACKAGE DIMENSIONS

QFN20, 2.5x4.5 MM
CASE 485AA
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20	
REF		
b	0.20	
D	2.50	
DSC		
D2	0.85	
E	4.50	
E2	2.85	
e	0.50	
K	0.20	BSC
L	0.35	---

