

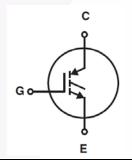
FAIRCHILD

Data Sheet

August 2014

1200 V NPT IGBT

HGTG18N120BN is based on Non- Punch Through (NPT) IGBT designs. The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: UPS, solar inverter, motor control and power supplies.


Formerly Developmental Type TA49304.

Ordering Information

PART NUMBER	PACKAGE	BRAND
HGTG18N120BND	TO-247	18N120BND

NOTE: When ordering, use the entire part number.

Symbol

Features

- 26 A, 1200 V, $T_C = 110^{\circ}C$
- Low Saturation Voltage: $V_{CE}(sat) = 2.45 \text{ V} @ I_{C} = 18 \text{ A}$
- Typical Fall Time 140ns at $T_J = 150^{\circ}C$
- Short Circuit Rating
- Low Conduction Loss

Packaging

JEDEC STYLE TO-247

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	Ratings	UNIT
Collector to Emitter VoltageBV _{CES}	1200	V
Collector Current Continuous		
At $T_C = 25^{\circ}C$ I_{C25}	54	А
At $T_{C} = 110^{\circ}C$ I_{C110}	26	А
Collector Current Pulsed (Note 1) I _{CM}	160	А
Gate to Emitter Voltage Continuous	±20	V
Gate to Emitter Voltage Pulsed V _{GEM}	±30	V
Switching Safe Operating Area at $T_J = 150^{\circ}C$ (Figure 2)	100A at 1200V	
Power Dissipation Total at $T_C = 25^{\circ}C$ P_D	390	W
Power Dissipation Derating $T_C > 25^{\circ}C$	3.12	W/ ^o C
Forward Voltage Avalanche Energy (Note 2) E _{AV}	125	mJ
Operating and Storage Junction Temperature Range TJ, TSTG	-55 to 150	°C
Maximum Lead Temperature for Soldering TL	260	°C
Short Circuit Withstand Time (Note 3) at $V_{GE} = 15 V \dots t_{SC}$	8	μs
Short Circuit Withstand Time (Note 3) at $V_{GE} = 12 V \dots t_{SC}$	15	μs

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. Pulse width limited by maximum junction temperature.
- 2. $I_{CE} = 25 \text{ A}, L = 40 \mu \text{H}, T_J = 25^{\circ}\text{C}$
- 3. $V_{CE(PK)} = 960 \text{ V}, \text{ } \text{T}_{J} = 125^{\circ}\text{C}, \text{ } \text{R}_{G} = 3 \text{ } \Omega.$

Electrical Specifications $T_{C} = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
Collector to Emitter Breakdown Voltage	BV _{CES}	$I_C = 250 \ \mu A, \ V_{GE} = 0 \ V$		1200	-	-	V
Emitter to Collector Breakdown Voltage	BV _{ECS}	$I_{C} = 10 \text{ mA}, V_{GE} = 0 \text{ V}$		15	-	-	V
Collector to Emitter Leakage Current	I _{CES}	V _{CE} = 1200 V	$T_C = 25^{\circ}C$	-	-	250	μΑ
			$T_C = 125^{\circ}C$	-	300	-	μΑ
			$T_C = 150^{\circ}C$	-	-	4	mA
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	$V_{} = 15 V_{}$	$T_C = 25^{\circ}C$	-	2.45	2.7	v
			$T_C = 150^{\circ}C$	-	3.8	4.2	v
Gate to Emitter Threshold Voltage	V _{GE(TH)}	$I_C = 150 \ \mu A, V_{CE} = V_{GE}$		6.0	7.0		v
Gate to Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 20 V$		-	-	±250	nA
Switching SOA	SSOA	$\begin{split} T_J &= 150^o C, \ R_G = 3\Omega, \ V_{GE} = 15 \ V, \\ L &= 200 \ \mu H, \ V_{CE(PK)} = 1200 \ V \end{split}$		100	-	-	А
Gate to Emitter Plateau Voltage	V _{GEP}	$I_{C} = 18 \text{ A}, V_{CE} = 600 \text{ V}$		-	10.5	-	v
On-State Gate Charge	Q _{G(ON)}	$I_{C} = 18 \text{ A},$ $V_{CE} = 600 \text{ V}$	V _{GE} = 15 V	-	165	200	nC
			$V_{GE} = 20 V$	-	220	250	nC
Current Turn-On Delay Time	t _{d(ON)I}	IGBT and Diode at $T_J = 25^{\circ}C$ $I_{CE} = 18 \text{ A}$ $V_{CE} = 960 \text{ V}$ $V_{GE} = 15 \text{ V}$ $R_G = 3 \Omega$ L = 1 mH Test Circuit (Figure 18)		-	23	28	ns
Current Rise Time	t _{rI}			-	17	22	ns
Current Turn-Off Delay Time	t _{d(OFF)I}			-	170	200	ns
Current Fall Time	t _{fI}			-	90	140	ns
Turn-On Energy (Note 5)	E _{ON1}			-	0.8	1.0	mJ
Turn-On Energy (Note 5)	E _{ON2}			-	1.9	2.4	mJ
Turn-Off Energy (Note 3)	E _{OFF}			-	1.8	2.2	mJ


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Current Turn-On Delay Time	t _{d(ON)} I	IGBT and Diode at $T_J = 150^{\circ}C$ $I_{CE} = 18 \text{ A}$ $V_{CE} = 960 \text{ V}$ $V_{GE} = 15 \text{ V}$ $R_G = 3 \Omega$ L = 1 mH Test Circuit (Figure 20)	-	21	26	ns
Current Rise Time	t _{rI}		-	17	22	ns
Current Turn-Off Delay Time	t _{d(OFF)} I		-	205	240	ns
Current Fall Time	t _{fI}		-	140	200	ns
Turn-On Energy (Note 5)	E _{ON1}		-	0.85	1.1	mJ
Turn-On Energy (Note 5)	E _{ON2}			3.7	4.9	mJ
Turn-Off Energy (Note 4)	E _{OFF}		-	2.6	3.1	mJ
Thermal Resistance Junction To Case	R _{θJC}		-	-	0.32	^o C/W

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

NOTE:

4. Turn-Off Energy Loss (E_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ($I_{CE} = 0$ A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

5. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E_{ON1} is the turn-on loss of the IGBT only. E_{ON2} is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same TJ as the IGBT. The diode type is specified in Fig. 18.

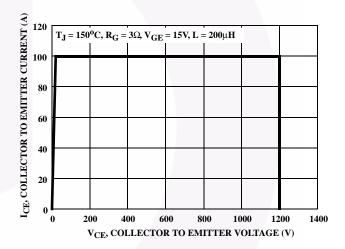


FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA

Typical Performance Curves Unless Otherwise Specified (Continued)

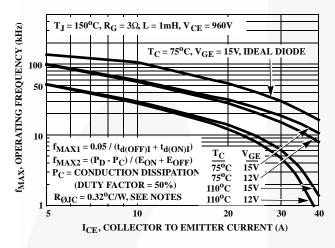


FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO EMITTER CURRENT

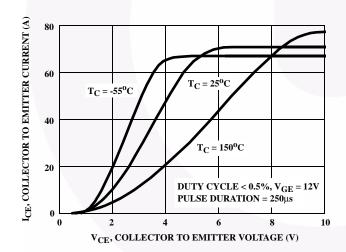


FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE

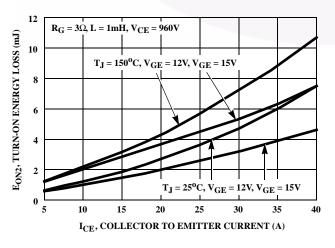


FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

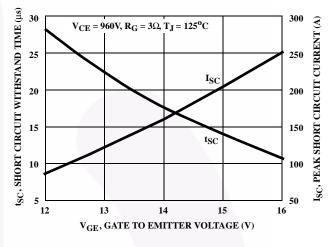


FIGURE 4. SHORT CIRCUIT WITHSTAND TIME

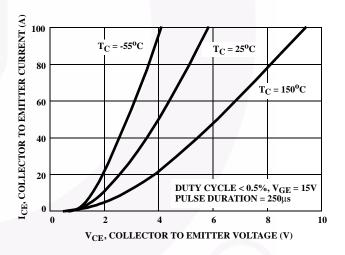
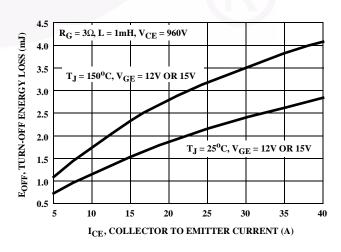
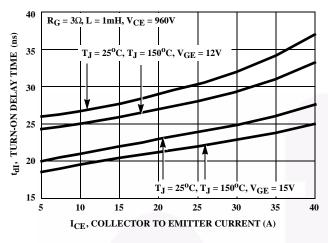




FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE

Typical Performance Curves Unless Otherwise Specified (Continued)

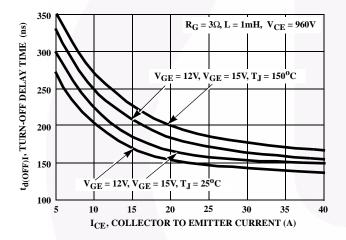


FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO EMITTER CURRENT

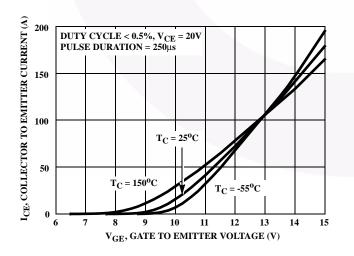


FIGURE 13. TRANSFER CHARACTERISTIC

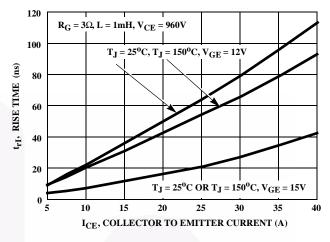


FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO EMITTER CURRENT

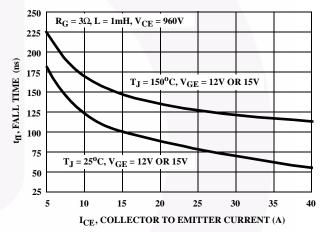


FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER CURRENT

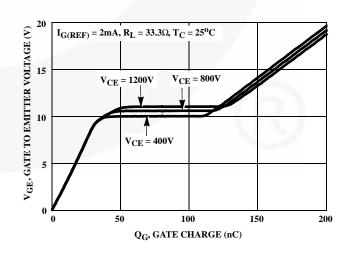
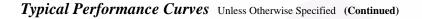



FIGURE 14. GATE CHARGE WAVEFORMS

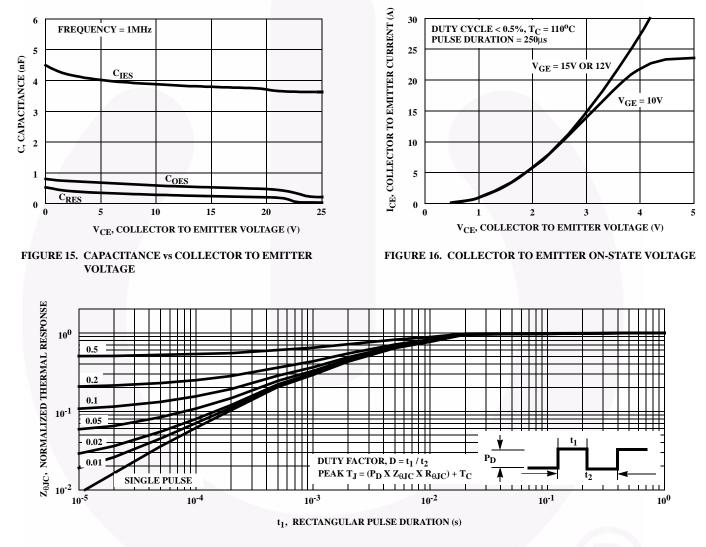


FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE

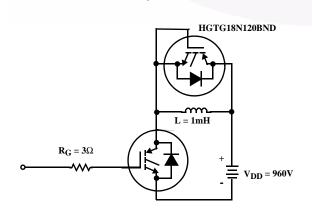


FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT

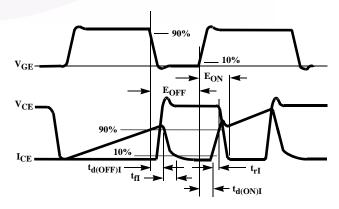


FIGURE 19. SWITCHING TEST WAVEFORMS

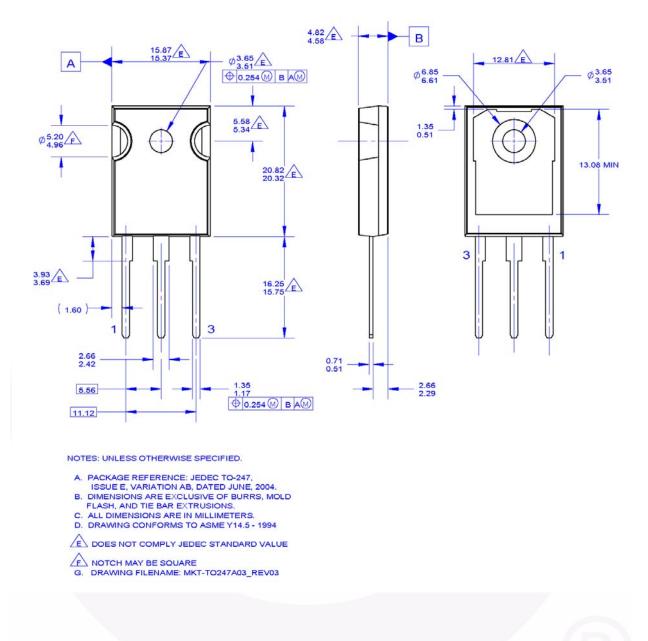
Test Circuits and Waveforms

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

- Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBDTM LD26" or equivalent.
- 2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means for example, with a metallic wristband.
- 3. Tips of soldering irons should be grounded.
- 4. Devices should never be inserted into or removed from circuits with power on.
- 5. Gate Voltage Rating Never exceed the gate-voltage rating of V_{GEM} . Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
- 6. **Gate Termination** The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turnon of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
- 7. Gate Protection These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information


Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows f_{MAX1} or f_{MAX2} ; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/(t_{d(OFF)I} + t_{d(ON)I})$. Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $t_{d(OFF)I}$ and $t_{d(ON)I}$ are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for an application other than $T_{JM}.\ t_{d(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2} = (P_D - P_C)/(E_{OFF} + E_{ON})$. The allowable dissipation (P_D) is defined by $P_D = (T_{JM} - T_C)/R_{\theta JC}$. The sum of device switching and conduction losses must not exceed P_D. A 50% duty factor was used (Figure 3) and the conduction losses (P_C) are approximated by $P_C = (V_{CE} \times I_{CE})/2$.

 E_{ON} and E_{OFF} are defined in the switching waveforms shown in Figure 21. E_{ON} is the integral of the instantaneous power loss (I_{CE} x V_{CE}) during turn-on and E_{OFF} is the integral of the instantaneous power loss ($I_{CE} \times V_{CE}$) during turn-off. All tail losses are included in the calculation for E_{OFF} ; i.e., the collector current equals zero ($I_{CE} = 0$).

Mechanical Dimensions

Figure 20. TO-247 3L - TO-247, MOLDED, 3 LEAD, JEDEC VARIATION AB

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO247-003

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAP [®] *
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic [™] DEUXPEED [®]
DEUXPEED®
Dual Cool™_
EcoSPARK [®]
EfficentMax [™]
ESBC™

airchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™ **FPS™**

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver[®] OptoHiT™ OPTOLOGIC® **OPTOPLANAR**[®]

@rTrench[®] PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success[™] SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

Svnc-Lock™ SYSTEM ®' TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™

<mark>∕ Ser</mark>Des" Ultra FRFET™

UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in: 1.

Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their

parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Advance Information Formative / In Design Datasheet contains preliminary data; supplementary data will be published at a later Preliminary First Production date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to No Identification Needed Full Production make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Obsolete Not In Production

Rev. 166