AXICOM

Electronics

## The Best Relaytion



Cradle Relay N

PCB, hand solder or plug-in relays, for DC operation, non-polarized, non-latching

## Features

- Multi purpose relay
- highly reliable
- great variety of contact arrangements and materials to meet specific applications
- Contacts for signal loads and currents up to 5 A
- AC and DC, latching and non-latching, coils operating voltage 1.5 V ... 125 V
- Sockets for easy and quick mounting of relays (see data sheet Accessories)


## Typical applications

- Measurement and control equipment
- Press controls with high safety requirements (forcibly guided springs)
- Telecommunications


## Versions

- Size I or II, depending on contact set
- Standard contact sets with max. 4 changeover, 2 break or 6 make contacts, special configurations on request
- Single or bifurcated contacts
- Hand solder terminals also for plug-in connection with screw fixing or PCB terminals
- Dust-protected with plastic cover, hermetically sealed with metal enclosure

European Directive conformance:

Cradle N relay product conformance according to:

- Directive 2000/53/EC: ELV (End of Life of Vehicles)
- Directive 2002/95/EC: ROHS (Restrictions of the use of certain hazardous substances in electrical and electronic equipment)
Compliance is evidenced by written declaration from all raw material suppliers.
Tyco Electronics AXICOM only has responsibility for the proper processing of these materials.
Confirmation is valid for date codes $\geq 0501$

Version V23154-Mxxxx Size I and V23154-Nxxxx Size II

For printed circuit mounting

With or without earth terminal

Dust-protected


Dimension drawing (in mm)

## Size I



## Mounting hole layout

View onto the component side of the PCB


Size II

$M=$ Earth terminal
a) Hole for mechanical armature actuation, if required
b) Hole for socket mounting with screw M1.6,

## Version V23154-COxxx Size I and

 V23154-D0xxx Size IIHand solder terminals, silver-plated

Also for plug-in connection ans screw fixing

With earth termina

Dust-protected

Dimension drawing (in mm)


Size I


Size II


For sockets and hold-down springs see data sheet Accessories

Version V23162-A0xxx Size I and V23162-B0xxx Size II

With hand solder terminals, silver-plated
Also for plug-in connection
and screw fixing
With earth terminal

Hermetically sealed

Dimension drawing (in mm)

Size I


For sockets and hold-down springs see data sheet Accessories


Size II


## Contact Data

| Ordering code block 3 | $\begin{gathered} \text { B104/B1 10/ } \\ \text { B112 } \end{gathered}$ | B604/B610/ <br> B612 | $\begin{gathered} \text { C104/C110/ } \\ \text { C112 } \end{gathered}$ | C404/C410 | F104 ... F107 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type of contact | max. 4 changeover contacts, 2 break contacts or 6 make contacts |  |  |  |  |
| Contact assembly | single contacts |  | bifurcated contacts |  | single contacts |
| Contact material | silver, gold-flashed | gold F | silver, gold-flashed | gold F | silver, gold-flashed |
| Max. switching voltage | 150 Vdc | 36 Vdc | 150 Vdc | 36 Vdc | 250 Vdc |
|  | 125 Vac | 30 Vac | 125 Vac | 30 Vac | 250 Vac |
| Max. switching current | 2 A | 0.2 A | 2 A | 0.2 A | 5 A |
| Max. switching capacity | 35 to 70 W see load limit curve page 7 50 VA | $\begin{gathered} 5 \mathrm{~W} \\ 5 \mathrm{VA} \end{gathered}$ | 35 to 70 W see load limit curve page 7 50 VA | $\begin{gathered} 5 \mathrm{~W} \\ 5 \mathrm{VA} \end{gathered}$ | 50 to 140 W see load limit curve page 7 500 VA |
| Max. continuous current at max. ambient temperature | 2 A |  |  |  | 5 A |

## Contact sets

Size I

| Number of contacts and type | 2 changeover contacts |  | 2 make contacts | 2 break contacts | $\begin{gathered} 1 \text { break } \\ 1 \text { make contact } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Symbols with base conncections <br> Contacts in release condition, coil polarity to set the relay | $4_{9}^{8} 1^{10}$ | $\left.\right\|_{6} ^{5}$ | $\prod_{8}^{10} \prod_{5}^{7}$ | ${ }_{10}^{8} \quad 4$ | $1_{10}^{8} 1_{5}^{7}$ |
| Contact assembly | single contacts | bifurcated contacts | single contacts |  |  |
| Contact material silver, gold-flashed Ordering code block 3 | B104 | C104 | F105 | F107 | F106 |
| Contact material gold F Ordering code block 3 | B604 | C404 |  |  |  |

Size II

| Number of contacts and type | 6 make contacts |  | 4 changeover |  | 2 changeover |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Symbols with base conncections <br> Contacts in release condition, coil polarity to set the relay |  |  |  | $\begin{aligned} & 4_{9}^{8} 1_{1}^{10} \\ & 4_{6}^{5} ?_{1}^{7} \end{aligned}$ | $\left.\right\|_{13} ^{11} 1_{7}^{14} 4^{5}$ |
|  | single contacts | bifurcated contacts | single contacts | bifurcated contacts | single contacts |
| Contact material silver, gold-flashed Ordering code block 3 | B112 | C112 | B110 | C 110 | F 104 |
| Contact material gold F Ordering code block 3 | B612 |  | B610 | C 410 |  |

Load limit curve for contact sets B 1 xx and C 1 xx


Safe breaking, no stationary arc
Contact material silver, gold-flashed

Load limit curve for contact sets F 1 xx


Safe breaking, no stationary arc
Contact material silver, gold-flashed

## Coil Data

| Nominal voltage | from 5 VDC to 125 VDC |
| :--- | :---: |
| Typical nominal power consumption, at 20"C | 0.8 W |
| Class of the operative range |  |
| acc to EN 61810-1 / IEC 61810-1 and VDE 0435 Part 201 |  |
| Operating voltage (according to the coil type) | max. $98 \%$ of the nominal voltage |

Coil version

| Nominal voltage $U_{\text {nom }}$ <br> Vdc | Operating voltage range at $20^{\circ} \mathrm{C}$ <br> Minimum voltage $U_{1}$ <br> Vdc |  |  |  | Maximum voltage $U_{\text {II }}$ <br> Vdc | Resistance at $20^{\circ} \mathrm{C}$ $\Omega$ | Coil number Ordering code block 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} -\mathrm{B} 104 /-\mathrm{B} 604 / \\ -\mathrm{F} 105 \end{gathered}$ | Conctact sets $\begin{aligned} & \text {-B110/-B112/-B610/ } \\ & \text {-612/-C104/-C404/ } \\ & \text {-F104/-F106/-F107 } \end{aligned}$ | -C112 | $\begin{aligned} & -\mathrm{C} 110 \\ & -\mathrm{C} 410 \end{aligned}$ |  |  |  |
| 5 | 1.8 | 2.5 | 3 | 3.7 | 7.2 | $28 \pm 3$ | 711 |
| 12 | 5.3 | 7.1 | 8.7 | 10.5 | 20 | $220 \pm 22$ | 717 |
| 24 | 11 | 14.5 | 18 | 22 | 40 | $890 \pm 89$ | 721 |
| 48 | 23 | 30 | 37 | 45 | 75 | $3200 \pm 480$ | 726 |
| 60 | 27 | 36 | 43 | 53 | 92 | $4700 \pm 705$ | 734 |
| 110 | 49 | 65 | 79 | 98 | 164 | $15000 \pm 1500$ | 735 |
| 125 | 61 | 81 | 99 | 122 | 190 | $20900 \pm 3140$ | 703 |

Terminals:
Coil with 1 winding
Start 4 End 1
Coil with 2 windings (upon request)

| Start 3 | End 2 | for winding I |
| :--- | :--- | :--- |
| Start 4 | End 1 | for winding II |

The minimum voltage $U$, depends on the contact set and the ambient temperature, the maximum voltage $U_{\text {|l }}$ only depends on the ambient temperature.

Between minimum voltage $U_{\text {Itamb }}$ and operating voltage $U$ a safety margin of approx. $20 \%$ is recommended.

| $U_{\text {Itamb }}(1.2)$ | $<U_{1} \leq U_{\text {Il }}^{\text {tamb }}$ |
| :---: | :---: |
| $U_{\text {Itamb }}$ | $=U_{1} \cdot U_{20}{ }^{\circ} \mathrm{C} \cdot k_{1 \text { tamb }}$ |
| $U_{\text {Il tamb }}$ | $=U_{\text {II } 20}{ }^{\circ} \mathrm{C} \cdot k_{\text {ll tamb }}$ |
| $t_{\mathrm{amb}}$ | = Ambient temperature <br> = Operating voltage |
| $U_{\text {I tamb }}$ | $=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$ |
| $U_{\text {ll tamb }}$ | $=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$ |
| $k_{1}$ and $k_{11}$ | = Factors |



## Instructions for impulse operation

The maximum voltage stated in the table (page 8) can be increased for impulse operation as follows:
$\mathrm{U}_{\text {II I mpuls }}$
$=\mathrm{U}_{\| \text {tamb }} \cdot \mathrm{q}$
$=$ Maximum continuous voltage at ambient temperature $t$
$=$ Factor
The impulse voltage must not exceed $80 \%$ of the test voltage (winding/frame or winding/winding) or 2.5 times the value of the maximum voltage listed in the table (page 8).

If $t_{\mathrm{ED}} \leq 3$ sthen $q=\sqrt{\frac{t_{\mathrm{z}}}{t_{\mathrm{ED}}}}$

Ift $t_{\text {ED }} \quad=$ Pulse width
$t_{2} \quad=$ Cycle time
If $t_{\mathrm{ED}} \quad=>3 \mathrm{~s}$ the value of $q$ must be obtained from the nomograph (next page)

Examples of various periodic pulse trains (energizing side)

1. Periodic recurrence of one energizing pulse

2. Periodic recurrence of two unequal energizing pulses

[^0]Nomograph for determining factor $q$


## General data



## Insulation

Test voltage ( 1 min ) winding / frame
contact / contact contact / frame
contact / coil

|  |  |
| :---: | :---: |
| $500 \mathrm{Vac}_{\mathrm{rms}}$ | $500 \mathrm{Vac}_{\mathrm{rms}}$ |
| $500 \mathrm{Vac}_{\mathrm{rms}}$ | $1000 \mathrm{Vac}_{\mathrm{rms}}$ |
| $500 \mathrm{Vac}_{\mathrm{rms}}$ | $1000 \mathrm{Vac}_{\mathrm{rms}}$ |
| $1000 \mathrm{Vac}_{\mathrm{rms}}$ | $1500 \mathrm{Vac}_{\mathrm{rms}}$ |

Basic type number of cradle relay N
V23154 = dust-protected
V23162 = hermetically sealed

Relay type
AO = Sizel,
for plug-in and screw fixing, hand solder terminals tinned, with earth terminal, hermetically sealed
BO = Size II,
for plug-in and screw fixing, hand solder terminals tinned,
with earth terminal, hermetically sealed
CO = Sizel,
for plug-in and screw fixing, hand solder terminals silver-plated, with earth terminal, dust-protected
DO = Size II,
for plug-in and screw fixing, hand solder terminals silver-plated,
with earth terminal, dust-protected
MO = Size I,
for printed circuit mounting, with earth terminal, dust-protected
NO = Size II,
for printed circuit mounting, with earth terminal, dust-protected
M4 = Sizel,
for printed circuit mounting, without earth terminal, dust-protected
N4 = Size II,
for printed circuit mounting, without earth terminal, dust-protected

Coil number
Versions see page 8

Contact set / type of contact
see page 6

Ordering example:

## V23154-D0721-B110

Cradle relay N, size II, plug-in, dust-protected, with solder terminals, silver-plated, coil 24 Vdc ,
4 changeover contact set, single contacts, contact material silver, gold-flashed, with earth terminal,

## Note:

The ordering scheme enables a multitude of variations. However, not all variations are defined as construction specifications (ordering code) and thus in the current delivery program.

## Ordering Information

| Relay Code | Tyco <br> Part Number | Relay Code | Tyco <br> Part Number |
| :---: | :---: | :---: | :---: |
| V23154C 702F101 | 3-1393806-3 | V23154D 719B110 | 5-1393808-6 |
| V23154C 704B104 | 4-1393806-3 | V23154D 719F104 | 6-1393808-2 |
| V23154C 716B104 | 6-1393806-4 | V23154D 720B110 | 6-1393808-5 |
| V23154C 717B104 | 6-1393806-7 | V23154D 720C110 | 7-1393808-0 |
| V23154C 719B104 | 7-1393806-1 | V23154D 720C410 | 7-1393808-3 |
| V23154C 720B104 | 7-1393806-8 | V23154D 720F104 | 7-1393808-6 |
| V23154C 720C104 | 8-1393806-1 | V23154D 720W 56 | 7-1393808-8 |
| V23154C 720F106 | 8-1393806-3 | V23154D 721B110 | 8-1393808-3 |
| V23154C 721B104 | 8-1393806-6 | V23154D 721B112 | 8-1393808-4 |
| V23154C 721B604 | 8-1393806-7 | V23154D 721B610 | 9-1393808-2 |
| V23154C 721C104 | 8-1393806-8 | V23154D 721C110 | 9-1393808-5 |
| V23154C 721F105 | 9-1393806-1 | V23154D 721F104 | 0-1393809-1 |
| V23154C 722B104 | 9-1393806-4 | V23154D 722B110 | 1-1393809-4 |
| V23154C 726B104 | 0-1393807-6 | V23154D 722F104 | 2-1393809-4 |
| V23154D 421B110 | 3-1393807-7 | V23154D 726B110 | 3-1393809-2 |
| V23154D 421F104 | 4-1393807-4 | V23154D 726F104 | 4-1393809-4 |
| V23154D 703F104 | 0-1393808-4 | V23154M 721B104 | 2-1393810-7 |
| V23154D 704B110 | 0-1393808-6 | V23154N 719B110 | 6-1393810-3 |

## IM Relays

$4^{\text {th }}$ generation slim line - low profile polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from $1.5 \ldots 24 \mathrm{~V}$, coil power consumption of 140... 200 mW , latching relays with 1 coil 100 mW . The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR 1089 ( $2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The IM relay is CECC/IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $10 \times 6 \mathrm{~mm}$ board space and 5.65 mm height.

## P2 Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V , coil power consumption 140 mW , latching relays with 1 coil 70 mW . The P 2 Relay is available as through hole or surface mount type and capable to switch currents up to 5 A. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

## FX Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, $140 \ldots 300 \mathrm{~mW}$ for the standard version, latching relays with 1 coil 100 mW . The FX2 relay is available as through hole type and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR 1089 ( $2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FX2 is CECC/ IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and $10,7 \mathrm{~mm}$ height.

## FT2 / FU2 Relays

$3^{\text {rd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V , coil power consumption $200 \ldots 300 \mathrm{~mW}$. Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FT2/FU2 is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

## FP2 Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 48 \mathrm{~V}$, coil power consumption of $80 \ldots 260 \mathrm{~mW}$ for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW .. The FP2 Relay is available as through hole type and capable to switch loads up to 30 W/62,5 VA. Dielectric strength fulfills FCC part 68 ( $1,5 \mathrm{kV}-10$ / $160 \mu \mathrm{~s})$. The FP2 is CECC/IECQ approved. Dimensions approx. $14 \times 9 \mathrm{~mm}$ board space and 5 mm height.

## MT2 / MT4

$2^{\text {nd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ and $4 \mathrm{c} / \mathrm{o}$ telecom and signal relay with bifurcated contacts. Nominal voltage range from 4.5 ... 48 V , coil power consumption 150/200/300/400 and 550 mW , and 300 mW (MT4). Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$ for both and the Bellcore requirements according GR 1089 ( $2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s}$ ) the MT4 only.
Dimensions MT2 approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height,
MT4 approx. $20 \times 15 \mathrm{~mm}$ board space and 11 mm height.

## D2n Relays

$2^{\text {nd }}$ generation non polarized $2 \mathrm{c} / \mathrm{o}$ relay for telecom and various other applications. Nominal voltage range from 3 ... 48 V , coil power consumption from 150 .... 500 mW . The D2n relay is capable to switch currents up to 3 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

## P1 Relays

Extremely sensitive, polarized $1 \mathrm{c} / \mathrm{o}$ relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 24 V , coil power consumption 65 mW , latching relays with 1 coil 30 mW . The P 1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $13 \times 7,6 \mathrm{~mm}$ board space and 7 mm height for THT or 8 mm height for SMT version.

## W11 Relays

Low cost, non polarized $1 \mathrm{c} /$ o relay for various applications. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 450 mW , sensitive versions 200 mW . The W11 relay is capable to switch currents up to 3 A. Dielectric strength 1000 Vrms. Dimensions approx. $15,6 \times 10,6 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

## Reed Relays

High sensitive, non polarized relay for telecom and various other applications, available with $1 \mathrm{n} / \mathrm{o}, 2 \mathrm{n} / \mathrm{o}$ or 1c/o contacts. Nominal voltage range from $5 \ldots 24 \mathrm{~V}$, coil power consumption $50 \ldots 280 \mathrm{~mW}$ for $1 \mathrm{n} / \mathrm{o}$ and $125 \ldots 280 \mathrm{~mW}$ for $2 \mathrm{n} / \mathrm{o}$ or $1 \mathrm{c} / \mathrm{o}$ versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc. Dimensions approx. $19,3 \times 7 \mathrm{~mm}$ board space and 5 ... $7,5 \mathrm{~mm}$ height for DIP or $19,8 \times 5 \mathrm{~mm}$ board space and $7,8 \mathrm{~mm}$ height for SIL version.

## Cradle Relays

Extremely reliable and mature relay family of $1^{\text {st }}$ generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from $1,5 \mathrm{Vdc}$ to 220 Vac . Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A . Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. $19 \times 24$ to $19 \times 35 \mathrm{~mm}$ board space and 30 mm height.

## Other Relays

We offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 / V23031 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series). Accessories like sockets, hold down springs, etc. optional.

## HF3 Relay

High performance low cost RF relay with excellent RF characteristics. Available with an impedance of 50 and 75 Ohm. Suitable for frequencies up to 3 GHz . Actually smallest RF relay available combining small size, excellent RF performance and SMD solderability. Available as non latching or latching relay with 1 or 2 coils and a nominal coil voltage range from 3 ... 24 V , coil power consumption 140 mW , latching relays with 1 coil 70 mW . Dimensions $14.6 \times 7.3 \times 10 \mathrm{~mm}$.

AXICOM

## Electronics



Tyco Electronics AXICOM Ltd.
Seestrasse 295 -P.O. Box 220
CH-8804 Au-Wädenswil / Switzerland
Phone +4117829111
Fax +4117829080
E-mail: axicom@tycoelectronics.com


Tyco Electronics
Paulsternstrasse 26
D-13629 Berlin / Germany
Phone +49 3038638573
Fax +49 3038638575
E-mail: axicom@tycoelectronics.com


Tyco Electronics EC Trutnov s.r.o.
Komenského 821
CZ-541 01 Trutnov / Czech Republic
E-mail: axicom@tycoelectronics.com

Tyco Electronics Corporation POB 3608,
Harrisburg, PA 17105, USA
Phone +1 800-522-6752


[^0]:    $t_{\mathrm{ED}} \quad=t_{1}+t_{\mathrm{II}}$
    $t_{1}+t_{\mathrm{ll}} \quad=$ Pulse widths within one cycle

