

FEATURES

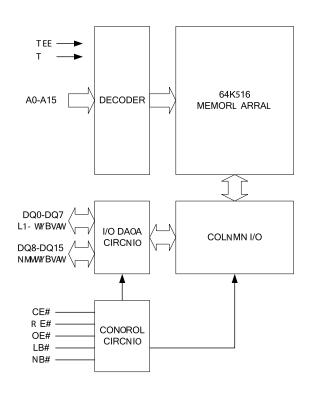
- Fast access time : 55ns
- Low power consumption: Operating current : 20mA (TYP.) Standby current : 2µA (TYP.)
- Single 2.7V ~ 5.5V power supply
- All outputs TTL compatible
- Fully static operation
- Tri-state output
- Data byte control : LB# (DQ0 ~ DQ7) UB# (DQ8 ~ DQ15)
- Data retention voltage :1.5V (MIN.)
- Lead free and green package available
- Package : 44-pin 400 mil TSOP-II 48-ball 6mm x 8mm TFBGA

PRODUCT FAMILY

GENERAL DESCRIPTION

The AS6C1016 is a 1,048,576-bit low power CMOS static random access memory organized as 65,536 words by 16 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

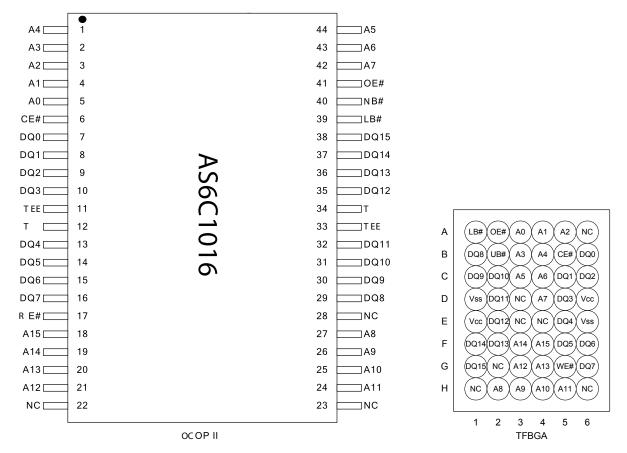
The AS6C1016 is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.


The AS6C1016 operates from a single power supply of $2.7V \sim 5.5V$ and all inputs and outputs are fully TTL compatible

Product	Operating		Speed	Power Dissipation		
Family	Temperature	Vcc Range Speed		Standby(IsB1,TYP.)	Operating(Icc,TYP.)	
AS6C1016(I)	-40 ~ 85℃	2.7 ~ 5.5V	55ns	2μΑ	20mA	

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION



SYMBOL	DESCRIPTION
A0 - A15	Address Inputs
DQ0 – DQ15	Data Inputs/Outputs
CE#	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
Vcc	Power Supply
Vss	Ground

OCTOBER 2007

PIN CONFIGURATION

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	VT1	-0.5 to 6.5	V
Voltage on any other pin relative to Vss	Vt2	-0.5 to Vcc+0.5	V
Operating Temperature	TA	-40 to 85(I grade)	°C
Storage Temperature	Tstg	-65 to 150	°C
Power Dissipation	PD	1	W
DC Output Current	Ιουτ	50	mA
Soldering Temperature (under 10 sec)	TSOLDER	260	°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	LB#	UB#	I/O OPERATION		SUPPLY CURRENT
		02"		LU	00"	DQ0-DQ7	DQ8-DQ15	
Standby	H X	X X	X X	X H	X H	High – Z High – Z	High – Z High – Z	ISB1
Output Disable	L	H H	H H	L X	X L	High – Z High – Z	High – Z High – Z	lcc,lcc1
Read	L L L	L L L	ΗН	L H L	H L L	D _{OUT} High – Z D _{OUT}	High – Z D _{OUT} D _{OUT}	lcc,lcc1
Write	L L L	X X X	L L L	L H L	H L L	D _{IN} High – Z D _{IN}	High – Z D _{IN} D _{IN}	lcc,lcc1

Note: H = VIH, L = VIL, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP. ^{*4}	MAX.	UNIT
Supply Voltage	Vcc			2.7	3.0	5.5	V
Input High Voltage	VIH ^{*1}			2.4	-	Vcc+0.3	V
Input Low Voltage	VIL ^{*2}			- 0.2	-	0.6	V
Input Leakage Current	lu lu	$V_{CC} \ge V_{IN} \ge V_{SS}$		- 1	-	1	μA
Output Leakage Current	ILO	$V_{CC} \ge V_{OUT} \ge V_{SS},$ Output Disabled		- 1	-	1	μA
Output High Voltage	Vон	Iон = -1mA		2.4	2.7	-	V
Output Low Voltage	Vol	Iol = 2mA		-	-	0.4	V
Average Operating Power supply Current	lcc	Cycle time = Min., I _{I/O} = 0mA CE# =0.2V, Others at 0.2V or V _{CC} -0.2V	55	-	20	60	mA
	Icc1	Cycle time = 1µs CE# = 0.2V , I/o = 0mA Other pins at 0.2V or Vcc - 0.2V		-	4	10	mA
Standby Power Supply Current	ISB1	CE# ≧Vcc - 0.2V Others at 0.2V or Vcc - 0.2V		-	2	50	μA

Notes:

1. VIH(max) = V_{CC} + 3.0V for pulse width less than 10ns.

2. VIL(min) = Vss - 3.0V for pulse width less than 10ns.

3. Over/Undershoot specifications are characterized, not 100% tested.

4. Typical values are included for reference only and are not guaranteed or tested.

Typical valued are measured at V_{CC} = V_{CC}(TYP.) and T_A = 25° C

CAPACITANCE (TA = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	Cı/o	-	8	pF

Note : These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to V _{CC} - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	С∟ = 30pF + 1TTL, Iон/Iо∟ = -2mA/4mA

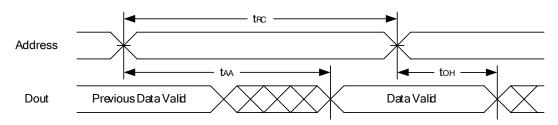
AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

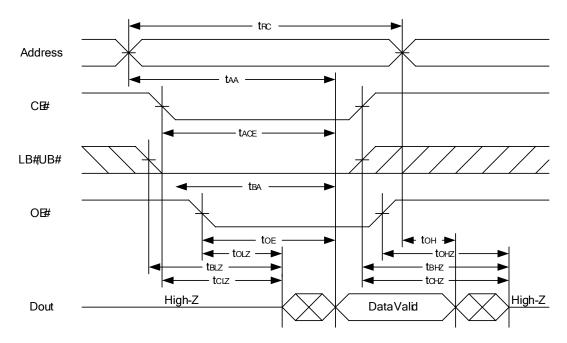
PARAMETER	SYM.	AS6C1	AS6C1016-55	
		MIN.	MAX.	1
Read Cycle Time	trc	55	-	ns
Address Access Time	taa	-	55	ns
Chip Enable Access Time	t ACE	-	55	ns
Output Enable Access Time	toe	-	30	ns
Chip Enable to Output in Low-Z	tcLz*	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	ns
Chip Disable to Output in High-Z	tснz*	-	20	ns
Output Disable to Output in High-Z	tонz*	-	20	ns
Output Hold from Address Change	tон	10	-	ns
LB#, UB# Access Time	tва	-	55	ns
LB#, UB# to High-Z Output	tвнz*	-	25	ns
LB#, UB# to Low-Z Output	tBLZ*	10	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	AS6C1016-55		UNIT
		MIN.	MAX.	
Write Cycle Time	twc	55	-	ns
Address Valid to End of Write	taw	50	-	ns
Chip Enable to End of Write	tcw	50	-	ns
Address Set-up Time	tas	0	-	ns
Write Pulse Width	twp	45	-	ns
Write Recovery Time	twr	0	-	ns
Data to Write Time Overlap	tow	25	-	ns
Data Hold from End of Write Time	tон	0	-	ns
Output Active from End of Write	tow*	5	-	ns
Write to Output in High-Z	twnz*	-	20	ns
LB#, UB# Valid to End of Write	tвw	50	-	ns


*These parameters are guaranteed by device characterization, but not production tested.

OCTOBER 2007



TIMING WAVEFORMS

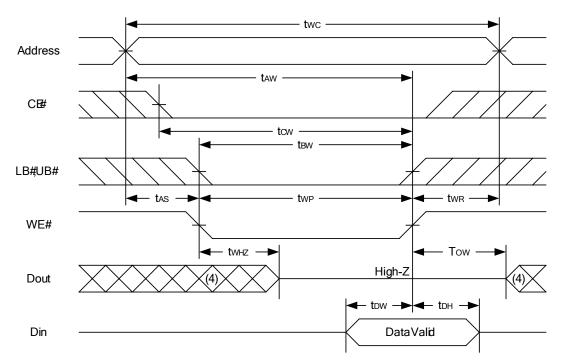
READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)

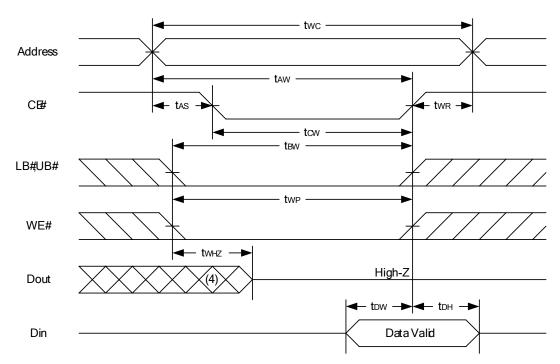
Notes :

1.WE#is high for read cycle.

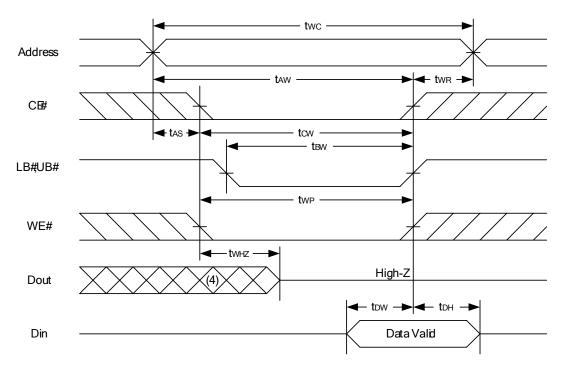
2.Device is continuously selected OE# = low, CE# = low, LB# or UB# = low.


3.Address must be valid prior to or coincident with CE# = low, LB# or UB# = low transition; otherwise tAA is the limiting parameter.

4. tclz, tblz, tolz, tcHz, tbHz and toHz are specified with $C_L = 5pF$. Transition is measured $\pm 500mV$ from steady state.


5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ}, t_{BHZ} is less than t_{BLZ}, t_{OHZ} is less than t_{OLZ}.

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)



WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

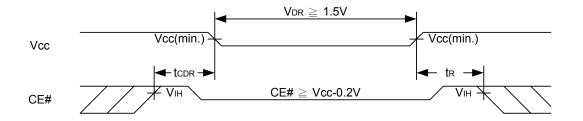
WRITE CYCLE 3 (LB#,UB# Controlled) (1,2,5,6)

Notes :

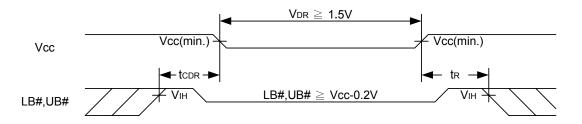
- 1.WE#,CE#, LB#, UB# must be high during all address transitions. 2.A write occurs during the overlap of a low CE#, low WE#, LB# or UB# = low.
- 3. During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tow to allow the drivers to turn off and data to be placed on the bus.

4.During this period, I/O pins are in the output state, and input signals must not be applied. 5.If the CE#, LB#, UB# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.

6.tow and twHz are specified with CL = 5pF. Transition is measured ±500mV from steady state.



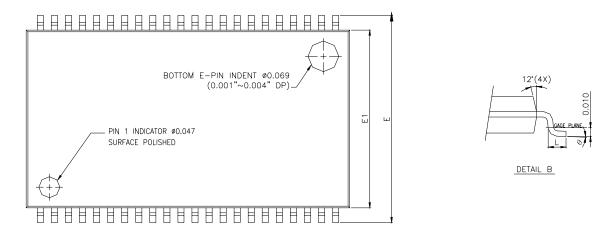
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	Vdr	$CE# \ge V_{CC} - 0.2V$	1.5	-	5.5	V
Data Retention Current	IDR	V_{CC} = 1.5V CE# \geq Vcc - 0.2V Other pins at 0.2V or Vcc-0.2V	-	0.5	20	μA
Chip Disable to Data Retention Time	ICDD	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	tR		tRC∗	-	-	ns

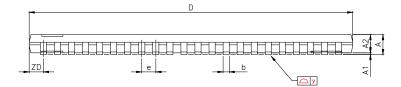

tRC* = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

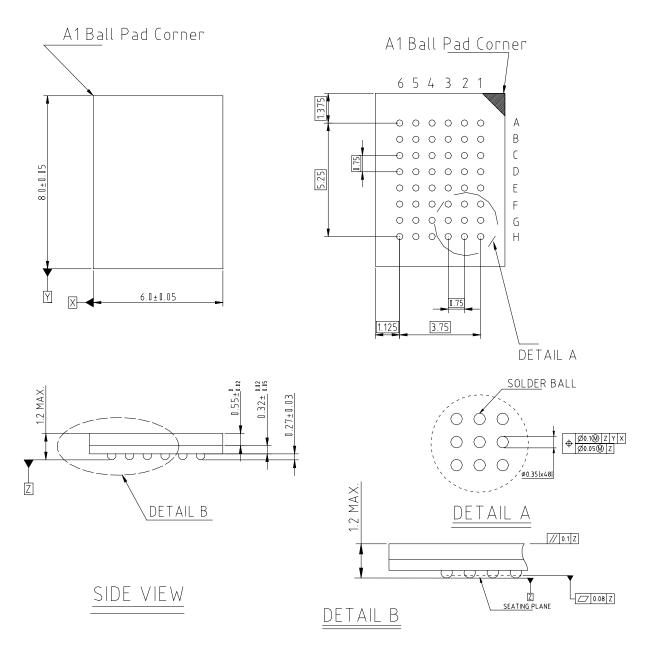
Low Vcc Data Retention Waveform (2) (LB#, UB# controlled)




OCTOBER 2007

PACKAGE OUTLINE DIMENSION

44-pin 400mil TSOP- II Package Outline Dimension



SYMBOLS	DIMENSI	ONS IN MILL	METERS	DIM	ENSIONS IN I	MILS
STWIDOLS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	-	-	1.20	-	-	47.2
A1	0.05	0.10	0.15	2.0	3.9	5.9
A2	0.95	1.00	1.05	37.4	39.4	41.3
b	0.30	-	0.45	11.8	-	17.7
С	0.12	-	0.21	4.7	-	8.3
D	18.212	18.415	18.618	717	725	733
E	11.506	11.760	12.014	453	463	473
E1	9.957	10.160	10.363	392	400	408
е	-	0.800	-	-	31.5	-
L	0.40	0.50	0.60	15.7	19.7	23.6
ZD	-	0.805	-	-	31.7	-
У	-	-	0.076	-	-	3
θ	0°	3°	6°	0°	3°	6°

48-ball 6mm × 8mm TFBGA Package Outline Dimension

ORDERING INFORMATION

Alliance	Organization	VCC Range	Package	Operating Temp	Speed ns
AS6C1016-55ZIN	64K x 16	2.7 - 5.5V	44pin TSOP II	Industrial ~ -40 C - 85 C	55
AS6C1016-55BIN	64K x 16	2.7 - 5.5V	48ball TFBGA	Industrial ~ -40 C - 85 C	55

PART NUMBERING SYSTEM

AS6C	1016	-55	X	X	N
				Temperature	
	Device Number		Package Option	Range	N = Lead Free
low power	10 = 1M Acc	Access	44pin TSOP II	I = Industrial	RoHS
SRAM prefix	16 =x16	Time	48ball TFBGA	(-40 to + 85 C)	compliant part

Alliance Memory, Inc 511 Taylor Way, San Carlos, CA 94070, USA Phone: 650-610-6800 Fax: 650-620-9211

www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

AS6C1016

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to thisdocument and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The datacontained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at anytime, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information inthis product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of anyproduct described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability orwarranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to inAlliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of use as critical components inlife-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion ofAlliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance ag

Alliance Memory Inc.