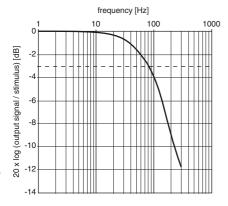


Model number

ACY04-F99-2I-V15


2 axis acceleration sensor

Features

- Analog output 4 mA ... 20 mA
- **Fixed evaluation limits**
- High shock resistance
- Teachable zero point
- Measuring range -2g ... +2g
- Increased noise immunity 100 V/m
- e1-Type approval

Diagrams

Frequency response

Technical Data

General	specifications

Type	2 axis acceleration sensor
Measurement range	-2 2 <i>g</i>
Resolution	≤5 m <i>g</i>
Repeat accuracy	≤ ± 5 m <i>g</i>
Frequency range	0 100 Hz

Functional safety related parameters

MTTF _d	304 a
Mission Time (T _M)	20 a
Diagnostic Coverage (DC)	0 %

Indicators/operating means

LED, green Operating display TEACH-IN indication LED, yellow

Electrical specifications

Operating voltage U_B 10 ... 30 V DC No-load supply current I₀ < 25 mA Time delay before availability t_v ≤ 100 ms

Analog output

Output type	2 current outputs 4 20 mA (one output for each axis)
Zero signal	12 mA

Slope of output characteristic 4 mA / q ± 1.2 % Linearity error

Load resistor 0 ... 200 Ω at U_B = 10 ... 18 V0 ... 500 Ω at U_B = 18 ... 30 V

Temperature influence

Offset \leq ± 4 μA / KSlope $\leq \pm 20 \,\mu\text{A}/g$

Ambient conditions

Ambient temperature -40 ... 85 °C (-40 ... 185 °F) Storage temperature -40 ... 85 °C (-40 ... 185 °F)

Mechanical specifications

Connection type M12 x 1 connector, 5-pin Housing material PA IP68 / IP69K Protection degree Mass 240 g

Compliance with standards and

directives

Standard conformity

Shock and impact resistance 100 g according to DIN EN 60068-2-27

EN 60947-5-2:2007 Standards IEC 60947-5-2:2007

Approvals and certificates

CSA approval	cCSAus Listed, General Purpose
CCC approval	Products with a maximum operating voltage of ≤36 V do not bear a CCC marking because they do not require

2006/28/EG e1 Type approval

EMC Properties

Emitted interference and interference immunity in accordance with motor vehicle directive 2006/28/EG (e1 Type approval)

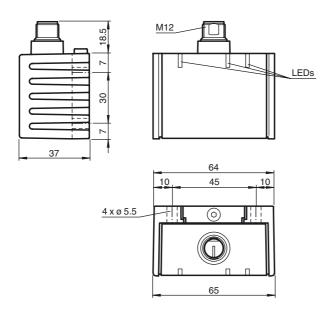
Interference immunity in accordance with DIN ISO 11452-2: 100 V/m

Frequency band 20 MHz up to 2 GHz

Mains-borne interference in accordance with ISO 7637-2:

Pulse	1	2a	2b	3a	3b	4
Severity level	Ш	Ш	III	Ш	Ш	Ш
Failure criterion	С	Α	С	Α	Α	С

EN 61000-4-2: CD: 8 kV AD: 15 kV Severity level


EN 61000-4-3: 30 V/m (80...2500 MHz) Severity level ١V

EN 61000-4-4: 2 kV Severity level Ш

EN 61000-4-6: 10 V (0.01...80 MHz)

Severity level Ш EN 55011: Klasse A

Dimensions

Installation orientation

On delivery, the zero position of the sensor axes is achieved when the sensor is mounted flat on a horizontal plane and the electrical connection of the sensor points horizontally sidewards.

LED display

Displays dependent on the operating state	LED green: Power	LED yellow 1	LED yellow 2
Normal operation	on	off	off
Teach In of reference point Teach In (Pin 5 connected to +U _B) for 1 s 10 s falling slope at Teach In input then sensor returns to normal operation.	on on on	on flashes 3 x off	off off off
Reset to factory settings: Teach In (Pin 5 connected to +U _B) for 20 s 25 s falling slope at Teach In input then sensor returns to normal operation.	on on on	on flashes 3 x off	off flashes 3 x off
Undervoltage	flashes	off	off

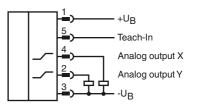
Factory settings

see Technical Data

Teach-in of reference point (output S1)

- Move sensor to reference position
- Apply supply voltage (+Ub) to Teach In input (Pin 5) for 1 s ... 10 s Teach In LED lights up for confirmation
 Disconnect Teach In input (Pin 4) before the 10 s time elapses

- Teach In LED flashes 3 x for confirmation
 Reference point is now programmed and the sensor returns to normal operation (see LED display)


Resetting the sensor to factory settings

- Apply supply voltage (+Ub) to Teach In input (Pin 5) for 20 s ... 25 s
- Teach In LED lights up for confirmation
 Disconnect Teach In input (Pin 4) before the 25 s time elapses
 Teach In LED and Out LED flash 3 x for confirmation
- The sensor is now reseted to factory settings and returns to normal operation (see LED display)

Undervoltage detection

If the supply voltage falls below a value of approx. 7 V, all outputs and yellow LEDs are deactivated. The green "power" LED flashes rapidly. If the supply voltage rises above a value of approx. 8 V, the sensor continues with normal operation.

Electrical connection

Pinout

Wire colors in accordance with EN 60947-5-2

1	BN	(brown)
2	WH	(white)
3	BU	(blue)
4	BK	(black)
5	GY	(gray)

Accessories

V15-W-2M-PUR

Cable socket, M12, 5-pin, PUR cable

V15-G-2M-PUR

Cable socket, M12, 5-pin, PUR cable

Mounting of the sensor

Inclination sensors from the -F99 series consist of a sensor module and accompanying cast aluminum housing. Select a flat surface with minimum dimensions of 70 mm x 50 mm to mount the sensor. Mount the sensor as follows:

- Loosen the central screw under the sensor connection.
- Slide back the clamping element until you are able to remove the sensor module from the housing.
- Remove the sensor module from the housing
 Position the housing at the required mounting location and secure using four countersunk screws. Make sure that the heads of the screws do not protrude.
 Place the sensor module in the housing.
 Slide the clamping element flush into the housing. Check that the sensor element is seated correctly.

7. Finally tighten the central screw.
The inclination sensor is now mounted correctly.