Relays for every application

The Complete Relay Family: Every One a Winner

You're unlikely to find a more complete, more extensive family of relays on the market than SIMIREL. Function relays, relays for thermistor motor protection, switching relays and converters: SIMIREL has them all. Whatever your needs. SIMIREL simply has to be the most comprehensive range of relay products you'll come across anywhere.

This new Siemens family offers you everything you could possibly wish for between the motor feeder and the automation components: function relays for time, monitoring and temperature plus thermistor motor protection devices, all switching relays, in other words plug-in, power and interface relays, and the complete spectrum of interface converters. No matter what kind of relay you're looking for SIMIREL has the answer.

Among SIMIREL's great advantages: all its members from A to Z couldn't be easier to operate. And you no longer need to shop around to find them. Just take a look for yourself. You'll be surprised at what awaits you.

The main advantages at a glance:

- Comprehensive range - fit for every application
- Extremely simple to operate
- Multifunctional - the relays can be flexibly used
- Graduated family - accommodates every performance need
- Always innovative - regular new additions to the spectrum of products
- Excellent value for money

Contents

Function relays

1. 3RS10 temperature monitoring relays for
PT 100/1000, KTY $83 / 84$ and NTC
2. 3 RS 11 temperature monitoring relays for thermocouple types $\mathrm{J}, \mathrm{K}, \mathrm{T}, \mathrm{E}$, and N
3. 3RN1 thermistor motor protection 8
4. 3RP1 time relays 10
5. 7PV time relays for front panel mounting, with analog or digital settings12
6. 3 UG3 monitoring relays for electrical quantities14
7. 3 UG3 monitoring relays for liquid level and speed18

Converters

8. 3RS17 interface converters, standard signal and universal converters

Switching relays

9. 3TX70 interface relays 22
10. $3 T X 70$ interface modules with semiconductor output24
11. LZX plug-in relays 26
12. 3 TG10 power relays 28
Wide-voltage range power supply units12. SITOP power28
Engineering information 30

Everything switched to go -

With Siemens SIMIREL switching and function relays, everything runs smoothly. Whether in production or transport, whether monitoring motors or controlling complex plants and systems - our relays have everything under control, so that you have a handle on it all from the word go.

1 3RS10Temperature Monitoring Relays
 for PT 100/1000 , KTY 83/84 and NTC ${ }^{1)}$

The 3RS10 temperature monitoring relays make a good alternative to temperature controllers in the low-end segment. They are used to monitor temperatures in solid, liquid and gaseous media. The temperature in the medium is detected by means of one of the above sensor types, evaluated by the device and checked to see if it is above, below or within a defined range (window function). The output relay is switched either on or off at the threshold value, depending on the parameter settings.

The most important applications:

- Controlling heating, ventilation and air conditioning systems
- Monitoring limiting temperatures and signaling alarms
- Monitoring motors
- Monitoring process variables in electroplating technology, in the packaging and plastics industries etc.

Main advantages:

- Extremely simple operation with no complex menu system
- Graduated product family - fit for every application
- Low-priced compact and standard devices - quick to install and easy to operate
- High-end evaluation units with digital display - suitable for wide temperature ranges and a variety of sensor types
- Settable hysteresis
- Fast troubleshooting by detecting wire breakage and short circuit in the sensor circuit
- Wide-range voltage power supplies reduce the number of versions - only one device is required
- All versions are alternatively available with spring-loaded terminal connections
- Version for evaluating three sensors in one device, e.g. for motor protection, multiple monitoring
${ }^{1)}$ NTC, Siemens Matsushita; type B 57272-4333-A1
$100^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 2{ }^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$

All devices with analog settings are set using a rotary knob. It is possible to set either one or two threshold values as well as a hysteresis of between 2 and 20%. The hysteresis only applies to one of the threshold values of devices with two thresholds; there is a fixed hysteresis of 5% for the second threshold. This product series was developed for simple applications where settings only need to be accurate to $\pm 5 \%$.

Sensor	Description	Monitoring function	Measuring range	Contacts	Indications	Control supply voltage	Order No. (MLFB)
Analog settings, 1 threshold value, 22.5 mm wide							
PT 100	1 threshold, closed-circuit principle, without fault memory	Overtemperature	-50 to $+50^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{NC} \end{aligned}$	2 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1000- } \square \text { CD00 } \\ & \text { 3RS1000- } \square \text { CK00 } \end{aligned}$
			0 to $+100^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1000- } \square \text { CD10 } \\ & \text { 3RS1000- } \square \text { CK10 } \end{aligned}$
			0 to $+200{ }^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1000- } \square \text { CD20 } \\ & \text { 3RS1000- } \square \text { CK20 } \end{aligned}$
PT 100	1 threshold, closed-circuit principle, without fault memory	Undertemperature	-50 to $+50^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{NC} \end{aligned}$	2 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1010- } \square \text { CD00 } \\ & \text { 3RS1010- } \square \text { CK00 } \end{aligned}$
			0 to $+100^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1010- } \square \text { CD10 } \\ & \text { 3RS1010- } \square \text { CK10 } \end{aligned}$
			0 to $+200{ }^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \mathrm{UC} \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1010- } \square \text { CD20 } \\ & \text { 3RS1010- } \square \text { CK20 } \end{aligned}$
Analog settings, 2 threshold values, $\mathbf{2 2 . 5} \mathbf{~ m m}$ wide (alarm trip)							
PT 100	2 threshold values, open/closedcircuit principle selectable, without fault memory	Overtemperature	-50 to $+50^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{CO} \end{aligned}$	3 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1020- } \square \text { DD00 } \\ & \text { 3RS1020- } \square \text { DW00 } \end{aligned}$
			0 to $+100^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1020- } \square \text { DD10 } \\ & \text { 3RS1020- } \square \text { DW10 } \end{aligned}$
			0 to $+200^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1020- } \square \text { DD20 } \\ & \text { 3RS1020- } \square \text { DW20 } \end{aligned}$
PT 100	2 threshold values, open/closedcircuit principle selectable, without fault memory	Undertemperature	-50 to $+50^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{CO} \end{aligned}$	3 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1030- } \square \text { DD00 } \\ & \text { 3RS1030- } \square \text { DW00 } \end{aligned}$
			0 to $+100^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1030- } \square \text { DD10 } \\ & \text { 3RS1030- } \square \text { DW10 } \end{aligned}$
			0 to $+200^{\circ} \mathrm{C}$			$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1030- } \square \text { DD20 } \\ & \text { 3RS1030- } \square \text { DW20 } \end{aligned}$

The temperature monitoring relays with digital settings are even easier to operate. The following parameters can be set:

- 2 threshold values, $\vartheta 1, \vartheta 2$
- 1 hysteresis, applies to both thresholds
- 1 time delay, applies to both thresholds
- Open/closed-circuit principle
- Overtemperature/undertemperature/window monitoring function
- Sensor type: PT $100 / 1000$, KTY $83 / 84$, NTC
- No. of sensors for 3RS1041 (one type only)
- Display of the sensor status for 3RS1041

The setting accuracy is $1^{\circ} \mathrm{C}$. A separate relay with a normally open contact, which signals a broken or short-circuited sensor, is integrated for monitoring the sensor.
Digital settings, 2 threshold values, 45 mm wide

- 3RS11Temperature Monitoring Relays
 forThermocouple Types J, K, T, E, and N

The 3RS11 temperature monitoring relays make a good alternative to temperature controllers in the low-end segment. They are used to monitor temperatures in solid, liquid and gaseous media. The temperature is detected in the medium by means of one of the above sensor types, evaluated by the device and checked to see if it is above, below or within a defined range (window function). The output relay is switched either on or off at the threshold value, depending on the parameter settings.

The most important applications:

- Controlling heating, ventilation and air conditioning systems
- Monitoring limiting temperatures and signaling alarms
- Monitoring motors
- Monitoring process variables in electroplating technology and in the packaging and plastics industries

Main advantages:

- Internal compensation
- Extremely simple operation with no complex menu system
- Graduated product family - fit for every application
- Low-priced compact and standard devices - quick to install and easy to operate
- High-end evaluation units with digital display - suitable for wide temperature ranges and a variety of sensor types
- Settable hysteresis
- Fast troubleshooting by detecting wire breakage in the sensor circuit
- Wide-range voltage power supplies reduce the number of versions - only one device is required
- All versions are alternatively available with spring-loaded terminal connections

3RS11 temperature monitoring relays for thermocouples

All devices with analog settings are set using a rotary knob. It is possible to set either one or two threshold values as well as a hysteresis of between 2 and 20%. The hysteresis only applies to one of the threshold values of devices with two thresholds; there is a fixed hysteresis of 5% for the second threshold. This product series was developed for simple applications where settings only need to be accurate to $\pm 5 \%$.

Sensor	Description	Monitoring function	Measuring range	Contacts	Indications	Control supply voltage	Order No. (MLFB)

Analog settings, 1 threshold value, $\mathbf{2 2 . 5} \mathbf{~ m m}$ wide

Type J	1 threshold value, closed-circuit principle, without fault memory	Overtemperature	$\begin{aligned} & 0 \text { to }+200^{\circ} \mathrm{C} \\ & \hline 0 \text { to }+600^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{NC} \end{aligned}$	2 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1100- CD20 } \\ & \text { 3RS1100- CK20 } \\ & \text { 3RS1100- CD30 } \\ & \text { 3RS1100- CK30 } \end{aligned}$
Type K	1 threshold value, closed-circuit principle, without fault memory	Overtemperature	0 to $+200^{\circ} \mathrm{C}$ 0 to $+600^{\circ} \mathrm{C}$ +500 to $+1000^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{NC} \end{aligned}$	2 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1101- CD20 } \\ & \text { 3RS1101- CK20 } \\ & \text { 3RS1101- CD30 } \\ & \text { 3RS1101- CK30 } \\ & \text { 3RS1101- CD40 } \\ & \text { 3RS1101- CK40 } \end{aligned}$
Type J	1 threshold value, closed-circuit principle, without fault memory	Undertemperature	$\begin{aligned} & 0 \text { to }+200^{\circ} \mathrm{C} \\ & 0 \text { to }+600^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{NC} \end{aligned}$	2 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \text { AC } \end{aligned}$	$\begin{aligned} & \text { 3RS1110- CD20 } \\ & \text { 3RS1110- CK20 } \\ & \text { 3RS1110- CD30 } \\ & \text { 3RS1110- CK30 } \end{aligned}$
Type K	1 threshold value, closed-circuit principle, without fault memory	Undertemperature	0 to $+200^{\circ} \mathrm{C}$ 0 to $+600^{\circ} \mathrm{C}$ +500 to $+1000^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{NC} \end{aligned}$	2 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \text { UC } \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RS1111- CD20 } \\ & \text { 3RS1111- } \square \text { CK20 } \\ & \text { 3RS1111- } \square \text { CD30 } \\ & \text { 3RS1111- }{ }^{\text {CK330 }} \\ & \text { 3RS1111- } \square \text { CD40 } \\ & \text { 3RS1111- } \end{aligned}$
Analo	tings, 2 threshold	s, 22.5 m	de (alarm	rip)			
Type J	2 threshold values, open/closed circuit, selectable, without fault memory	Overtemperature	$\begin{aligned} & 0 \text { to }+200^{\circ} \mathrm{C} \\ & 0 \text { to }+600^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{CO} \end{aligned}$	3 LEDs	$\begin{aligned} & 24 \mathrm{~V} \cup C \\ & 24-240 \mathrm{~V} \cup C \\ & 24 \mathrm{~V} \cup C \\ & 24-240 \mathrm{~V} \cup C \end{aligned}$	3RS1120- \square DD20 3RS1120- \square DW20 3RS1120- \square DD30 3RS1120- \square DW30
Type K	2 threshold values, open/closed circuit, selectable, without fault memory	Overtemperature	0 to $+200^{\circ} \mathrm{C}$ 0 to $+600^{\circ} \mathrm{C}$ +500 to $+1000^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{CO} \end{aligned}$	3 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 24-240 \mathrm{~V} \text { UC } \\ & 24 \mathrm{~V} \cup C \\ & 24-240 \mathrm{~V} \text { UC } \\ & 24 \mathrm{~V} \cup C \\ & 24-240 \mathrm{~V} \cup C \end{aligned}$	$\begin{aligned} & \text { 3RS1121- } \square \text { DD20 } \\ & \text { 3RS1121- } \square \text { DW20 } \\ & \text { 3RS1121- } \square \text { DD30 } \\ & \text { 3RS1121- } \square \text { DW30 } \\ & \text { 3RS1121- } \square \text { DD40 } \\ & \text { 3RS1121- } \square \text { DW40 } \end{aligned}$
Type J	2 threshold values, open/closed circuit, selectable, without fault memory	Undertemperature	$\begin{aligned} & 0 \text { to }+200^{\circ} \mathrm{C} \\ & 0 \text { to }+600^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{CO} \end{aligned}$	3 LEDs	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 24-240 \mathrm{~V} \text { UC } \\ & 24 \mathrm{~V} \text { UC } \\ & 24-240 \mathrm{~V} \text { UC } \end{aligned}$	3RS1130- \square DD20 3RS1130- \square DW20 3RS1130- \square DD30 3RS1130- \square DW30
Type K	2 threshold values, open/closed circuit, selectable, without fault memory	Undertemperature	0 to $+200^{\circ} \mathrm{C}$ 0 to $+600^{\circ} \mathrm{C}$ +500 to $+1000^{\circ} \mathrm{C}$	$\begin{aligned} & 1 \mathrm{NO} \\ & +1 \mathrm{CO} \end{aligned}$	3 LEDs	$\begin{aligned} & 24 \mathrm{~V} \cup \mathrm{C} \\ & 24-240 \mathrm{~V} \cup \mathrm{C} \\ & 24 \mathrm{~V} \cup C \\ & 24-240 \mathrm{~V} \cup C \\ & 24 \mathrm{~V} \cup C \\ & 24-240 \mathrm{~V} \cup C \end{aligned}$	$\begin{aligned} & \text { 3RS1131- } \square \text { DD20 } \\ & \text { 3RS1131- } \square \text { DW20 } \\ & \text { 3RS1131- } \square \text { DD30 } \\ & \text { 3RS1131- } \square \text { DW30 } \\ & \text { 3RS1131- } \square \text { DD40 } \\ & \text { 3RS1131- } \square \text { DW40 } \end{aligned}$

The temperature monitoring relays with digital settings are even easier to operate.
The following parameters can be set:

- 2 threshold values, $\vartheta_{1}, \vartheta_{2}$
- Overtemperature/undertemperature/window monitoring function
- 1 hysteresis, applies to both threshold values
- 1 time delay, applies to both threshold values
- Sensor type: J, K, T, E, N
- Open/cosed-circuit princip

The setting accuracy is $1^{\circ} \mathrm{C}$. A separate relay with a normally open contact, which signals a broken or short-circuited sensor, is integrated for monitoring the sensors.

Digital settings, 2 threshold values, $\mathbf{4 5} \mathbf{~ m m}$ wide

Sensor	Description	Monitoring function	Measuring range	Contacts	Indicators	Control supply voltage	Order No. (MLFB)
$\underset{\text { E, N }}{\text { Type }, ~ K, ~ T, ~}$	1 sensor memory/ without memory	Selectable (overtemp./ undertemp./ window)	$\begin{aligned} & -99 \text { to } \\ & +999^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO}+1 \mathrm{CO} \\ & 1 \mathrm{NO} \end{aligned}$	3 LEDs + digital display	24 V UC	3RS1140- \square GD60
						24-240 V UC	3RS1140- \square GW60

Accessories: Interchangeable labels for digital device covers

3 3RN1
 Thermistor Motor Protection

3RN1 thermistor motor protection relays provide decisive advantages where current-dependent protection using either a circuit-breaker or an overload relay is not the ideal monitoring quantity: In specific cases, often caused by external defects, overheating can occur without this being able to be detected by the thermal image in the circuit-breaker/overload relay. Examples include:

- Heavy-duty starting (e.g. centrifuges)
- Operation with AC drive converters/inverters
- Frequent switching
- Restricted cooling, e.g. as a result of high dirt accumulation (for example in the paper and textile industries, cement plants)
- Braking operations

Additional application possibilities:

- "Alarm and shutdown" function by using two sensor circuits with different response temperatures - this means that it is possible to respond before shutting down (for example, switching-in additional cooling, reducing the load etc.)
- Multi-motor protection using only one device, e.g. for conveyor lines for several motors which must be shut down together.

Main advantages:

- The motor winding temperature is directly measured
- Only one device is used for all motor outputs
- The device/terminal labeling is according to DIN EN 50005 for "normal" switching relays and for overload protective devices
- Relay with hard-gold-plated contacts for use under difficult conditions
- Wire breakage and short circuits in the sensor circuit are displayed using an LED
- All versions are alternatively equipped with screw connection or spring-loaded terminal connection
- For special cases: Version with protective separation up to 300 V according to DIN/VDE 0106 and version with bistable relay

Thermistor motor protection relay for PTC thermistors (type A PTCs)
All devices with the exception of 24 V AC/DC have electr. isolation

1 = Srew connection
2 = Spring-loaded terminal connection

| Version | Reset | Switching contacts | Control supply voltage Order No. (MRPD) |
| :--- | :--- | :--- | :--- | :--- |

Compact evaluation units, $\mathbf{2 2 . 5} \mathbf{~ m m}$ wide, monostable, closed-circuit current principle, 1 LED

Terminal A1 is connected to the common of the changeover contact	Auto	1 changeover contact	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC} \\ & 110 \mathrm{VAC} \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RN1000- } \square \text { AB00 } \\ & \text { 3RN1000- } \square \text { AG00 } \\ & \text { 3RN1000- } \square \text { AM00 } \end{aligned}$

Standard evaluation units, 22.5 mm wide, monostable, closed-circuit current principle, 2 LEDs

	Auto	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC} / D C \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 230 \mathrm{~V} \mathrm{AC} \\ & 24-240 \mathrm{~V} \mathrm{AC/DC} \end{aligned}$	$\begin{aligned} & \text { 3RN1010- } \square \text { CB00 } \\ & \text { 3RN1010- } \square \text { CG00 } \\ & \text { 3RN1010- } \square \text { CM00 } \\ & \text { 3RN1010- } \square \text { CW00 } \end{aligned}$
		2 changeover contacts	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 230 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & \text { 3RN1010- } \square \text { BB00 } \\ & \text { 3RN1010- } \square \text { BG00 } \\ & \text { 3RN1010- } \square \text { BM00 } \end{aligned}$
		2 W hard-gold-plated	24 V AC/DC	3RN1010- \square GB00
	Manual/ Remote ${ }^{3)}$	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC} \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RN1011- } \square \text { CB00 } \\ & \text { 3RN1011- } \square \text { CK00 } \end{aligned}$
Short-circuit detection in the sensor circuit	Manual/ Remote ${ }^{3)}$	2 W	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RN1011- } \square \text { BB00 } \\ & \text { 3RN1011- } \square \text { BG00 } \\ & \text { 3RN1011- } \square \text { BM00 } \end{aligned}$
		2 W hard-gold-plated	24 V AC/DC	3RN1011- \square GB00
Fault memory ${ }^{2)}$	Manual/Auto/ Remote	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC} \\ & 110 / 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RN1012- } \square \text { CB00 } \\ & \text { 3RN1012- } П \text { CK00 } \end{aligned}$
Fault memory ${ }^{2)}$, short-circuit detection in the sensor circuit	Manual/Auto/ Remote	2 changeover contacts	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3RN1012- } \square \text { BB00 } \\ & \text { 3RN1012- } \square \text { BG00 } \\ & \text { 3RN1012- } \square \text { BM00 } \end{aligned}$
		2 W hard-gold-plated	24 V AC/DC	3RN1012- \square GB00
Fault memory ${ }^{21}$, short-circuit and broken wires in the sensor circuit are detected and displayed, wide-range voltage with screw connection with protective separation ${ }^{11}$	Manual/Auto/ Remote	2 changeover contacts	$\begin{aligned} & 24 \mathrm{~V} \text { AC/DC } \\ & 24-240 \mathrm{~V} \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RN1013- } \square \text { BB00 } \\ & \text { 3RN1013- } \square \text { BW10 } \end{aligned}$
		2 W hard-gold-plated	24-240 V AC/DC	3RN1013- \square GW10

Evaluation units for 2 sensor circuits, alarm and shutdown, 22.5 mm wide, monostable, closed-circuit current principle, 3 LEDs

Test/reset key, fault memory ${ }^{22}$, the evaluation circuit for "Alarm" uses an NO contact in the open-circuit principle	Manual/Auto/ Remote	1 NO + 1 changeover contact	24-240 V AC/DC	3RN1022- \square DW00

Evaluation units for 6 sensor circuits, multi-motor protection, 45 mm wide, monostable, closed-circuit current principle, 8 LEDs

Test/reset key, fault memory ${ }^{2)}$	Manual/Auto/ Remote	$1 \mathrm{NO}+1 \mathrm{NC}$	$24-240 \mathrm{VAC/DC}$	3RN1062- \square CW00

Bistable evaluation unit, $\mathbf{2 2 . 5} \mathbf{~ m m}$ wide

Test/reset key, fault memory ${ }^{27}$, short circuit and broken wires in the sensor circuit are detected and displayed, bistable version, not tripped when the control supply voltage fails

Manual/Auto/ Remote	2 changeover contacts	$24-240$ V AC/DC	3RN1013- \square BW01

[^0]
4 3RP1 Time Relays

3RP1 electronic time relays are used for all time-delayed switching operations in starting, protection and control circuits.
They are the ideal timer modules for industrial cabinet, switchgear and control manufacturers on account of their sophisticated, well-proven design and their space-saving, compact type of construction.

The most important applications:

ON delay:

- Suppressing noise pulses
- Staggered motor starting to prevent the power system from being overloaded etc.
OFF delay:
- Providing a run-on function after the control voltage has been removed (e.g. for fans)
- Emergency shutdown or bringing a plant or system into a defined condition after the supply voltage fails
Star-delta:
- Changing motors over from star to delta - with a dead interval of
- 50 ms on reversing to prevent short-circuiting between phases

Main advantages:

- All versions are alternatively available with spring-loaded terminal connections
- Sets of labels to identify the selected function of the multi-function time relays
- Transparent product family - fit for every application with just seven basic devices
- Multi-function time relays with wide-range voltage - significant logistical advantages
- Excellent value for money
- Positively driven, hard gold-plated relay contacts (e.g. for safety circuits up to category 2 in accordance with DIN EN 954-1 and/or in combination with electronic controls)
- Sealable cover - to protect the parameter settings

3RP20 electronic time relays
1 $=$ Srew connection
2 $=$ Spring-loaded terminal connection

Function	Contacts	Time range	Control supply voltage	Order No. (MLFB)
8 functions	1 CO (changeover contacts)	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/100-127 V AC	3RP2005- \square AO30
8 functions	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/200-240 V AC	3RP2005- AP30
ON delay	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/100-127V AC	3RP2025- AQ30
ON delay	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/200-240 V AC	3RP2025-] AP30
16 fuctions	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	$24-240 \mathrm{~V}$ UC	3RP2005- \square BW30

3RP15 electronic time relays

8 functions	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	12 V DC	3RP1505- \square AA40
8 functions	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/100-127 V AC	3RP1505- \square AQ30
8 functions	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/200-240 V AC	3RP1505- \square AP30
8 functions	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24-240 V UC	3RP1505- \square AW30
8 functions	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24-240 V UC	3RP1505- \square RW30 ${ }^{1 /}$
16 functions	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/100-127 V AC	3RP1505- \square BQ30
16 functions	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/200-240 V AC	3RP1505- \square BP30
16 functions	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24-240 V UC	3RP1505- \square BW30
16 functions	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	400-440 V AC	3RP1505-1 $\mathrm{BT}^{\text {a }}{ }^{\text {2) }}$
ON delay	1 CO	$0.5-10 \mathrm{~s}$	24 V UC/100-127 V AC	3RP1511- \square AQ30
ON delay	1 CO	$0.5-10 \mathrm{~s}$	24 V UC/200-240 V AC	3RP1511- \square AP30
ON delay	1 CO	$1.5-30 \mathrm{~s}$	24 V UC/100-127 V AC	3RP1512- \square AQ30
ON delay	1 CO	$1.5-30 \mathrm{~s}$	24 V UC/200-240 V AC	3RP1512- \square AP30
ON delay	1 CO	5-100 s	24 V UC/100-127 V AC	3RP1513- \square AQ30
ON delay	1 CO	5-100 s	24 V UC/200-240 V AC	3RP1513- \square AP30
ON delay	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/100-127 V AC	3RP1525- \square AQ30
ON delay	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/200-240 V AC	3RP1525- \square AP30
ON delay	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	42-48/60 V UC	3RP1525- \square BR30
ON delay	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/100-127 V AC	3RP1525- \square BQ30
ON delay	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/200-240 V AC	3RP1525- \square BP30
ON delay	2 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	$24-240 \mathrm{~V}$ UC	3RP1525- \square BW30
ON delay, 2-wire	1 NO contact, semiconductor	$0.05-240 \mathrm{~s}$	24-66 V UC	3RP1527- \square EC30
ON delay, 2-wire	1 NO contact, semiconductor	$0.05-240 \mathrm{~s}$	90-240 V UC	3RP1527- \square EM30
OFF delay with auxiliary voltage	1 CO	$0.5-10 \mathrm{~s}$	24 V UC/100-127 V AC	3RP1531- \square AQ30
OFF delay with auxiliary voltage	1 CO	$0.5-10 \mathrm{~s}$	24 V UC/200-240 V AC	3AP1531- \square AP30
OFF delay with auxiliary voltage	1 CO	$1.5-30 \mathrm{~s}$	24 V UC/100-127 V AC	3RP1532- \square AQ30
OFF delay with auxiliary voltage	1 CO	$1.5-30 \mathrm{~s}$	24 V UC/200-240 V AC	3RP1532- \square AP30
OFF delay with auxiliary voltage	1 CO	$5-100$ s	24 V UC/100-127 V AC	3RP1533- \square AQ30
OFF delay with auxiliary voltage	1 CO	5-100 s	24 V UC/200-240 V AC	3RP1533- \square AP30
OFF delay without auxiliary voltage	1 CO	0.05-100 s	24 V UC	3RP1540- \square AB30
OFF delay without auxiliary voltage	1 CO	$0.05-100 \mathrm{~s}$	100-127 V UC	3RP1540- \square AJ30
OFF delay without auxiliary voltage	1 CO	$0.05-100 \mathrm{~s}$	200-240 V UC	3RP1540- \square AN30
OFF delay without auxiliary voltage	2 CO	$0.05-100 \mathrm{~s}$	24 V UC	3RP1540- \square BB30
OFF delay without auxiliary voltage	2 CO	$0.05-100 \mathrm{~s}$	100-127 V UC	3RP1540- \square BJ30
OFF delay without auxiliary voltage	2 CO	$0.05-100 \mathrm{~s}$	200-240 V UC	3RP1540- \square BN30
Clock-pulse generator	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	42-48 V UC/60 V AC	3RP1555- \square AR30
Clock-pulse generator	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/100-127 V AC	3RP1555- \square AQ30
Clock-pulse generator	1 CO	$0.05 \mathrm{~s}-100 \mathrm{~h}$	24 V UC/200-240 V AC	3RP1555- \square AP30
Star-delta with run-on function	3×1 NO contact	$1-20 \mathrm{~s}, 30-600 \mathrm{~s}$ (run-on)	24 V UC/100-127 V AC	3RP1560- \square SQ30
Star-delta with run-on function	3×1 NO contact	$1-20 \mathrm{~s}, 30-600 \mathrm{~s}$ (run-on)	24 V UC/200-240 V AC	3RP1560- \square SP30
Star-delta	1 NO contact + 1 NO contact	$1-20 \mathrm{~s}$	24 V UC/100-127 V AC	3RP1574- \square NQ30
Star-delta	1 NO contact + 1 NO contact	$1-20$ s	24 V UC/200-240 V AC	3RP1574- \square NP30
Star-delta	1 NO contact + 1 NO contact	3-60 s	24 V UC/100-127 V AC	3RP1576- \square NQ30
Star-delta	1 NO contact + 1 NO contact	$3-60$ s	24 V UC/200-240 V AC	3RP1576- \square NP30

- 7PV
 Time Relays

for Front Panel Mounting with Analog or Digital Settings

7PV electronic time relays have been optimized as built-in devices for operator panels. In terms of their functions, rated voltage and time ranges, they represent the ideal solution no matter what the application. The $48 \times 48 \mathrm{~mm}$ size is designed to fit into $45 \times 45 \mathrm{~mm}$ panel cutouts.

Five relay versions are sufficient to cover a wide spectrum of applications, because all the devices are supplied with selectable time ranges from 0.1 s to 10 h or from 0.01 s to 9999 h .

From 24 V UC to 240 V AC in the multi-function time relays - either analog settings with a large rotary knob or digital settings with an LCD display. All the versions combine with an 11-pole socket, either for surface mounting (DIN rail) or with a connection on the back. The relays are easy to install or replace anywhere within the ambient temperature range from -20 to $+60^{\circ} \mathrm{C}$.

Main advantages:

- All products in the series are $48 \times 48 \mathrm{~mm}$ in size
- Analog settings from ON delay to multi-function
- Multi-function relays with digital settings plus LCD display
- Selectable time ranges from 0.5 s to 10 h or from 0.01 s to 9999 h
- All settings are possible on the front
- Easy to replace thanks to the separation of components, sockets and relays

Built-in time relays with analog settings

ON delay
Multi-function (4 functions)

- ON delay
- OFF delay with auxiliary voltage
- Pulse-shaping
- Making pulse contact

2 CO or 1 CO with time delay +1 instantaneous CO

LED

$0.1 \mathrm{~s}-10 \mathrm{~h}$, six possible settings
24 V UC/AC 110 V
24 V UC/220-240 V AC

Built-in time relays with digital settings

Multi-function (6 functions):

- ON delay
- OFF delay with auxiliary voltage
- Blinking, pulse-starting
- Blinking, interval-starting
- Making pulse contact
- Pulse shaping

1 changeover contact
LCD display
0.01 s-9999 h, eleven possible settings 24 V UC/110-240 V AC
g ciaping

7PV3 solid-state time relays

Function	Contacts	Time range	Control supply voltage	Order No. (MLFB)
6 functions	1 CO	$0.01 \mathrm{~s}-9999 \mathrm{~h}$	$24 \mathrm{~V} \mathrm{UC} / 110-240 \mathrm{~V} \mathrm{AC}$	7PV3348-2AX34

7PV4 solid-state time relays, analog stettings

Function	Contacts	Time range	Control supply voltage	Order No. (MLFB)
4 functions	1 CO (changeover contact)	$0.1 \mathrm{~s}-10 \mathrm{~h}$	24 V UC/110 V AC	7PV4348-1AG30
4 functions	1 CO	$0.1 \mathrm{~s}-10 \mathrm{~h}$	24 V UC/220-240 V AC	7PV4348-1AP30
ON delay	2 CO	$0.1 \mathrm{~s}-10 \mathrm{~h}$	24 V UC/110 V AC	7PV4148-1BG30
ON delay	2 CO	$0.1 \mathrm{~s}-10 \mathrm{~h}$	24 V UC/220-240 V AC	7PV4148-1BP30

Applications

Design	Order No.	
11-pole socket with connection on back	7PX9921	
11-pole socket for DIN rail and surface mounting		LZX:MT78750

f 3UG3 Monitoring Relays

for Electrical Signals

Phase and voltage monitoring (single- and three-phase)

3UG3 monitoring relays for phase and voltage measure various parameters in the main and auxiliary circuits of plants and systems. The main purpose of these devices is to detect faults or symptoms of wear in good time and to respond to them before considerably greater damage is caused.

Applications:

The range of applications is shown in the table below. This table indicates which system states can be detected with the help of which monitoring parameters.

Measured quantity	Possible system status
Phase sequence	- Direction of rotation of the drive
Phase failure	- Fuse tripped - Control supply voltage failure - Single-phase operation of a motor which consequently overheats
Phase unbalance	- Motor overheated as a result of asymmetrical voltages - Asymmetrically loaded power systems detected - Phase failure detected despite regenerative feedback
Undervoltage	- Increased current in a motor which consequently overheats - Device reset accidentally - Collapse of a power system, especially if the equipment is battery-supplied - Threshold switch for 0 to 10 V analog signals
Overvoltage	- Destruction of the plant or system as a result of overvoltages - Plant or system switched on with excessive voltage - Threshold switch for 0 to 10 V analog signals
Insulation monitoring	- Monitors the insulation resistance between ungrounded networks and earthed conductors (IT networks)

Main advantages:

- No separate auxiliary voltages required by any of the three-phase devices
- Underrange or overrange selectable
- Single-phase voltage monitoring with or without auxiliary voltage
- Single-phase voltage monitoring also using a "window" technique

Three-phase phase and voltage monitoring

Phase failure	Phase sequence	Phase unbalance	Symmetrical undervoltage	Symmetrical overvoltage	N -conductor monitoring	Hysteresis	Time delay	Contacts	Width	Control supply voltage	Order No. (MLFB)
Yes	Yes	-	-	-	-	-	-	2 CO	22.5 mm	$3 \times 230-460 \mathrm{VAC}$	3UG3511-1BQ50
Yes	Yes	20 \% fixed	20 \% fixed	-	-	typ. 5 \%	0.2-10 s	2 CO	45 mm	$\begin{aligned} & 3 \times 180-260 \mathrm{~V} \mathrm{AC} \\ & 3 \times 320-460 \mathrm{~V} \mathrm{AC} \\ & 3 \times 380-550 \mathrm{~V} \mathrm{AC} \\ & 3 \times 460-660 \mathrm{~V} \mathrm{AC} \end{aligned}$	3UG3013-1BL60 3UG3013-1BP60 3UG3013-1BR60 3UG3013-1BS60
Yes	Yes	5-20 \%	-	-	-	10 \%	0.5-10 s	1 CO	45 mm	$\begin{aligned} & 3 \times 230 \mathrm{VAC} \\ & 3 \times 400 \mathrm{VAC} \end{aligned}$	3UG3012-1AL50 3UG3012-1AP50
Yes	No	$\begin{aligned} & 85-98 \% \\ & 102-115 \% \end{aligned}$	85-98 \%	102-115 \%	Yes	3 \%	0.1-10 s	$\begin{aligned} & 1 \mathrm{CO}+ \\ & 1 \mathrm{CO} \end{aligned}$	45 mm	$\begin{aligned} & 3 \times 400 \mathrm{VAC} \\ & 3 \times 400 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & \text { 3UG3041-1BP50 } \\ & \text { 3UG3042-1BP50 } \end{aligned}$

Single-phase voltage monitoring

Measuring range	Overvoltage/ undervoltage	Auto reset/ fault memory	Contacts	Time delay	Hysteresis	Auxiliary voltage	Electrical isolation	Order No. (MLFB)
AC/DC 0.2-60V	Selectable	Selectable	1 CO	0.1-3 s	5-50 \%	$\begin{aligned} & 230 \mathrm{VAC} \\ & 120 \mathrm{VAC} \\ & 24 \mathrm{VAC} \\ & 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	Yes Yes Yes No	3UG3531-1AL20 3UG3531-1AG20 3UG3531-1AC20 3UG3531-1AC40
AC/DC 15-600V	Selectable	Selectable	1 CO	$0.1-3 \mathrm{~s}$	5-50 \%	$\begin{aligned} & 230 \mathrm{VAC} \\ & 120 \mathrm{VAC} \\ & 24 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	Yes Yes Yes No	$\begin{aligned} & \text { 3UG3532-1AL20 } \\ & \text { 3UG3532-1AG20 } \\ & \text { 3UG3532-1AC20 } \\ & \text { 3UG3532-1AC40 } \end{aligned}$
AC/DC 15-150 V AC/DC 50-275 V	Selectable	Selectable	1 CO	$0.1-3 \mathrm{~s}$	5-50 \%	-		$\begin{aligned} & \text { 3UG3534-1AC50 } \\ & \text { 3UG3534-1AM50 } \end{aligned}$
AC/DC 15-150 V AC/DC $50-275 \mathrm{~V}$	Window (upper and lower threshold)	Auto reset	1 CO	$0.1-3 \mathrm{~s}$	5% fixed	-		$\begin{aligned} & \text { 3UG3535-1AC50 } \\ & \text { 3UG3535-1AM50 } \end{aligned}$

Insulation monitoring for IT networks

Network	Measuring range	Autoreset/ fault memory	Contacts	Auxiliary voltage	Order No. (MLFB)
AC	$1-110 \mathrm{k} \Omega$	selectable	1 CO	$\begin{aligned} & 115 / 230 \mathrm{~V} \mathrm{AC} \\ & 24-240 \mathrm{~V} \mathrm{AC} \end{aligned}$	3UG3081-1AK20 3UG3081-1AW30
DC	10-110 k Ω	selectable	1 CO	24-240 V AC	3UG3082-1AW30

f 3UG3 Monitoring Relays

 for Electrical Signals

 for Electrical Signals}

Single-phase current and $\cos \varphi$ monitoring

3UG3 monitoring relays for current and $\cos \varphi$ are used above all to monitor motor loads and the functionality of electrical loads. The main purpose of these devices is to detect faults or symptoms of wear in good time and to respond to them before considerably greater damage is caused.

Applications:

The range of applications is shown in the table below. This table indicates which system states can be detected with the help of which monitoring parameters.

Current monitoring	- Overload monitoring - Underload monitoring close to the rated torque
	- Functional monitoring for electrical loads - Wire breakage monitoring - Energy management (phase current monitoring)
	- Threshold switch for $0 / 4$ to 20 mA analog signals
$\cos \varphi$ monitoring	- No-load monitoring - Underload monitoring at the low end of the power range
- Overload monitoring	
(for low monitor outputs)	
- Very simple cos φ monitoring in power	
systems for controlling reactive-power	
compensation equipment	

Main advantages:

- Only two versions with three measuring ranges per device (20/100/500 mA and 1/5/10 A)
- Underrange/overrange and with/without fault memory selectable
- Settable starting bypass and time delay for underrange/overrange
- 22.5-mm-wide housing (current monitoring)

Single-phase current monitoring

Measuring range	Overcurrent/ undercurrent	Auto reset/ fault memory	Contacts	Starting bypass	Time delay	Hysteresis	Control supply voltage	Electrical isolation	Order No. (MLFB)
$2 \mathrm{~mA}-0.5 \mathrm{~A}$ AC/DC in three measuring ranges \|N1: 2-20 mA IN2: $10-100 \mathrm{~mA}$ IN3: 50-500 mA	Selectable	Selectable	1 CO	1-20 s	0.1-3s	5-50 \%	$\begin{aligned} & 230 \mathrm{VAC} \\ & 120 \mathrm{VAC} \\ & 24 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { 3UG3521-1AL20 } \\ & \text { 3UG3521-1AG20 } \\ & \text { 3UG3521-1AC20 } \\ & \text { 3UG3521-1AC40 } \end{aligned}$
$0.1-10 \mathrm{~A}$ AC/DC in three measuring ranges IN1: 0.1-1 A \| $\mathrm{N} 2: 0.5-5 \mathrm{~A}$ IN3: 1-10 A	Selectable	Selectable	1 CO	$1-20$ s	0.1-3 s	5-50 \%	$\begin{aligned} & 230 \mathrm{VAC} \\ & 120 \mathrm{VAC} \\ & 24 \mathrm{VAC} \\ & 24 \mathrm{~V} \text { DC } \end{aligned}$	Yes Yes Yes No	$\begin{aligned} & \text { 3UG3522-1AL20 } \\ & \text { 3UG3522-1AG20 } \\ & \text { 3UG3522-1AC20 } \\ & \text { 3UG3522-1AC40 } \end{aligned}$

cos φ monitoring

Measuring range	Max.continuous current	Overcurrent/ undercurrent	Contacts	Starting bypass	Time delay	Hysteresis fixed

(Current transformers can be used for higher currents. A selection is provided in Part 13 of our NSK Catalog.)
Measuring signal frequency: The 3UG352... monitoring relays can measure frequencies from 40 to 500 Hz and DC with the specified accuracy. For other frequencies, the setting must be changed accordingly.

7 3UG3 Monitoring Relays

for Liquid Level and Speed

3UG3 monitoring relays for non-electrical signals are used to monitor the levels of conductive liquids and speeds.

Applications:

The range of applications is shown in the table below. This table indicates which system states can be detected with the help of which monitoring parameters.

Level monitoring for conductive liquids	- Single-point and two-point level monitoring - Overflow protection - Dry-running protection - Leakage monitoring
Speed monitoring (one pulse per revolution is generated by a sensor)	- Slip or breakage of a belt drive - Zero-speed monitoring (not suitable for protecting persons) - Completeness monitoring for interlocking covers

Main advantages for liquid-level monitoring:

- 2- and 3-pole wire electrode, extremely simple mounting for installation from above
- Bar-type electrode for lateral installation - for greater filling heights and minimum space requirement
- Sensitivity settable from 5 to 100 kOhms
- 22.5 mm wide housing

Main advantages for speed monitoring:

- Selectable measuring ranges
- Two- or three-wire sensors can be connected
- Sensors with mechanical switching output or solid-state output can be connected
- Integrated auxiliary voltage for sensor

Applications:

Single-point and two-point liquid-level monitoring, overflow protection

This method can be used for many different liquids and substances, providing the resistance is $<100 \mathrm{k} \Omega$

Product

Buttermilk
Fruit juice Vegetable juice
Milk
Soup $\quad 2.2$
Beer 2.2
Coffee $\quad 2.2$

Ink
Saltwater
Wine
2.2 Whisky 220
2.2 Distilled Water 450

Monitoring relays for two-point level monitoring of conductive liquids

Sensitivity	Contacts	Width	Control supply voltage	Order No. (MLFB)
$5-100 \mathrm{kOhms}$	1 CO	22.5 mm	230 VAC	3UG3501-1AL20
			120 VAC	3UG3501-1AG20
			24 V AC	3UG3501-1AC20

Measuring probes

Description	Cable connection	No. of poles	
Wire electrode, 500 mm long, with Teflon isolation, max. operating temperature $90^{\circ} \mathrm{C}$, max. operating pressure 10 bar	$3 \times 0.5 \mathrm{~mm}^{2}, 2 \mathrm{~m}$ $2 \times 0.5 \mathrm{~mm}^{2}, 2 \mathrm{~m}$	Three-pole Two-pole	
Bar electrode for lateral installation, max. operating temperature $90^{\circ} \mathrm{C}$, max. operating pressure 10 bar	$3 \times 0.5 \mathrm{~mm}^{2}, 2 \mathrm{~m}$ $2 \times 0.5 \mathrm{~mm}^{2}, 2 \mathrm{~m}$	Two-pole Single-pole	3UG3207-3A
Rugged design, max. operating temperature $90^{\circ} \mathrm{C}$, max. operating pressure 10 bar	$2 \times 0.5 \mathrm{~mm}^{2}, 2 \mathrm{~m}$	Single-pole	

Monitoring relay for underspeed

Measuring range	Starting bypass	Width	Voltage	Electrical isolation	
Impulse $/ \mathrm{min}$	$0.3-30 \mathrm{~s}$	45 mm	230 VAC	Yes	
$0.1-600$			120 V AC	Yes	3UG3051-1AL20
$(10-0.0017 \mathrm{~Hz})$		24 VAC	Yes	3UG3051-1AG20	
			24 VDC	No	3UG3051-1AC20

(1) 3RS17 Interface Converters

 Standard Signal and Universal Converters

 Standard Signal and Universal Converters}

Interface converters are used mainly to isolate and convert analog signals. Sensors/actuators and controls generally have different power supply units and therefore require electrical isolation in the signal circuit. This is either integrated in the control or ensured by means of interface converters.

It is necessary to convert one signal to another, for instance, if a voltage signal needs to be transmitted over a long distance as a current signal or if the output of a sensor and the input of a control are not mutually compatible.

Another application is facilitated by the frequency outputs. The input signal is converted into a proportional frequency. Analog signals can thus be processed with digital inputs. This is important if the control does not allow an analog input to be installed or if all its analog inputs are already assigned, such as when devices are retrofitted.

Applications:

- Electrical isolation of analog signals
- Conversion of analog signals
- Conversion of analog signals to a frequency
- Conversion of non-standard signals to standard signals
- Overvoltage protection from analog inputs

Main advantages:

- Slimline design
- Universal converters simple to set
- Converters have a frequency output
- All ranges fully calibrated
- Complete family - the ideal solution for every situation
- Integrated Hand - Automatic switch with adjustable set point

Single interface converters						1 = Screw connection 2 = Spring-loaded terminal connection Order No. (MLFB)
Input	Output	Width	M-A switch	Control supply voltage	Electrical isolation	
$0 . . .10 \mathrm{~V}$ $0 . .10 \mathrm{~V}$ $0 . .10 \mathrm{~V}$ $0 . . .20 \mathrm{~mA}$ 0... 20 mA 0... 20 mA 4... 20 mA 4... 20 mA 4... 20 mA 0... 20 mA 0... 20 mA $2 \times 0 \ldots 20 \mathrm{~mA}$	$0 . . .10 \mathrm{~V}$ 0... 20 mA 4... 20 mA $0 . . .10 \mathrm{~V}$ 0... 20 mA 4... 20 mA $0 . . .10 \mathrm{~V}$ 0... 20 mA 4... 20 mA 0... 20 mA 0... 20 mA $2 \times 0 \ldots 20 \mathrm{~mA}$	6.2 mm 12.5 mm 12.5 mm	No No	$\begin{aligned} & 24 \vee \cup C \\ & 24 V \cup C \end{aligned}$ Passive converter Passive converter Passive converter	$\begin{aligned} & \text { 2-way } \\ & \text { 2-way } \end{aligned}$	3RS1700- \square AD00 3RS1700- \square CD00 3RS1700- \square DD00 3RS1702- \square AD00 3RS1702- \square CD00 3RS1702- \square DD00 3RS1703- \square AD00 3RS1703- \square CD00 3RS1703- \square DD00 3RS1720- \square ET00 3RS1721- \square ET00 3RS1722- ET00
Selectable standard interfaces						
Input	Output	Width	M-A switch	Control supply voltage	Electrical isolation	Order No. (MLFB)
$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & 0 / 4 \ldots 20 \mathrm{~mA} \\ & \text { selectable } \end{aligned}$	$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & 0 / 4 \ldots . .20 \mathrm{~mA} \\ & \text { selectable } \end{aligned}$	6.2 mm	No	24 V UC	2-way	3RS1705- \square FD00
		17.5 mm	No	24-240 V UC	3-way	3RS1705- \square FW00
$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & 0 / 4 \ldots 20 \mathrm{~mA} \\ & \text { selectable } \end{aligned}$	$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & 0 / 4 \ldots 20 \mathrm{~mA} \\ & \text { selectable } \end{aligned}$	17.5 mm	Yes	24 V UC	2-way	3RS1725- \square FD00
		17.5 mm	Yes	24-240 V UC	3-way	3RS1725- \square FW00
$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & 0 / 4 \ldots 20 \mathrm{~mA} \\ & \text { selectable } \end{aligned}$	$0 . .50 \mathrm{~Hz}$ $0 . . .100 \mathrm{~Hz}$ $0 . . .1 \mathrm{kHz}$ $0 . . .10 \mathrm{kHz}$ selectable	6.2 mm	No	24 V UC	2-way	3RS1705- \square KD00
		17.5 mm	No	24-240 V UC	3-way	3RS1705- \square KW00
Universal converters						
Input	Output	Width	M-A switch	Control supply voltage	Electrical isolation	Order No. (MLFB)
$0 . . .60 \mathrm{mV}$ 0... 100 mV $0 . .300 \mathrm{mV}$ 0... 500 mV $0 . . .1 \mathrm{~V}$ $0 . . .2 \mathrm{~V}$ $0 . .5 \mathrm{~V}$ $0 . . .10 \mathrm{~V}$ $0 . . .20 \mathrm{~V}$ 2... 10 V 0... 5 mA $0 . .10 \mathrm{~mA}$ 0... 20 mA 4... 20 mA $\pm 5 \mathrm{~mA}$ $\pm 20 \mathrm{~mA}$	$\begin{aligned} & 0 \ldots 10 \mathrm{~V} \\ & 0 / 4 \ldots 20 \mathrm{~mA} \\ & \text { selectable } \end{aligned}$	17.5 mm	No	$\begin{aligned} & 24 \mathrm{~V} \text { UC } \\ & 24 \mathrm{~V} \text { UC } \\ & 24-240 \mathrm{~V} \text { UC } \end{aligned}$	2-way 3-way 3-way	$\begin{aligned} & \text { 3RS1706- } \square \text { FD00 } \\ & \text { 3RS1706- } \square \text { FE00 } \\ & \text { 3RS1706- } \square \text { FW00 } \end{aligned}$

9 3TX70 Interface Relays

Two basic versions of the 3TX70 interface relays are available. The first of these is the 3TX7004/05 series in a 6.2-mm slimline housing. This series allows interface relays to be fitted into a smaller width inside the cabinet. Secondly, the 3TX7002/03 series permits mounting in small cabinets with reduced tier spacing between the DIN rails as well as a reduced depth. Both series are offered with an extensive range of input and output interfaces.

Applications:

- Electrical isolation
- Voltage conversion, e.g. from 24 V DC to 230 V AC
- Signal amplification
- Contact multiplication
- Relay controls in general
- Overvoltage and EMV protection from PLC's

Main advantages:

- Coil voltage tolerance from 0.7 to 1.25 Un with 24 V DC up to $60^{\circ} \mathrm{C}$
- Integrated protection circuit at the input
- Extremely reliable owing to soldered-in relays
- Connection comb for jumpering equal potentials
- Various relay complements available
- Manual-0-automatic switch for easier startup
- Multichannel devices

Applications:

Electronic control

1) For longer cables up to 350 m .

The accessories provide a simple means of jumpering equal potentials.

$1 \int$ 3TX70 Interface
 Modules

with Semiconductor Output

3TX70 interface modules are available either with conventional relays or in a semiconductor version. Compared to interface relays, semiconductortype interface modules offer a few significant advantages: the electronic components are extremely reliable and long-lasting (refer to the diagram below). The input interface combines the best of both worlds: improved technical features and a lower price. When considering output interfaces, the question of "relay or semiconductor" needs to be taken into account as well as the making/breaking capacity and the number of switching cycles. If a relay has to be replaced just once during the complete lifetime of a machine, then a semiconductor interface will already have paid for itself.

Applications:

- Switching DC loads
- Switching capacitive loads
- Large number of switching cycles

Main advantages of semiconductor interfaces:

- Input interface with semiconductor output - lower price and increased reliability
- Graduated series of output interfaces with semiconductors
- Extremely long electrical life
- Extremely good contact stability
- High DC making/breaking capacity

Graph comparing different failure mechanisms for electronic and mechanical components

Applications:

Peripheral devices

3TX 7004/05 - the narrow space-saver - output interface with semiconductor output, 1 NO contact

Control supply voltage	Width	Max. switching current	Switching voltage	Min. load current	Short-time loading capacity	M-0-A switch	Order No. (MLFB)
24 V DC	6.2 mm	$\begin{aligned} & \hline 0.5 \mathrm{~A} \\ & 0.75 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \leq 48 \mathrm{VDC} \\ & \leq 200 \mathrm{VDC} \\ & \leq 30 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & 1.5 \mathrm{~A} / 20 \mathrm{~ms} \\ & 3 \mathrm{~A} / 2 \mathrm{~ms} \\ & \text { Short-circuit-proof } \end{aligned}$		
	12.5 mm 12.5 mm	$\begin{aligned} & 5 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \leq 30 \vee \mathrm{VC} \\ & \leq 30 \vee \mathrm{DC} \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~A} \\ & 0.5 \mathrm{~A} \end{aligned}$	Short-circuit-proof Short-circuit-proof	Yes	$3 T X 700 \square$-3AC04 3 3TX700 \square-3AC14
	$\begin{aligned} & 6.2 \mathrm{~mm} \\ & 12.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 24-250 \mathrm{~V} \mathrm{AC} \\ & 24-250 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{~A} \\ & 0.05 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~A} / 3 \mathrm{~ms} \\ & 100 \mathrm{~A} / 20 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	3 3TX700 \square-3RB43 3TX700 \square-3AC03
110-230 V AC	6.2 mm	3 A	$\leq 30 \mathrm{~V}$ DC	-	Short-circuit-proof	-	3TX700 \square-3PG74

Input interface with semiconductor output, 1 NO contact

$110-230 \mathrm{~V} \mathrm{AC}$	6.2 mm	0.1 A	$\leq 30 \mathrm{VDC}$	-	$0.2 \mathrm{~A} / 3 \mathrm{~ms}$	-
24 V DC		0.1 A	$\leq 30 \mathrm{VDC}$	-	$0.2 \mathrm{~A} / 3 \mathrm{~ms}$	-
24 V DC		0.5 A	$\leq 48 \mathrm{VDC}$	-	$1.5 \mathrm{~A} / 20 \mathrm{~ms}$	-

3TX700 \square-4PG24
$3 T X 700 \square$-4PB24
$3 T X 700 \square$-4AB04

3TX7002 - for low tier heights - output interface with semiconductor output, 1 NO contact

Control supply voltage	Width	Max. switching current	Switching voltage	Min. load current	Short-time loading capacity	M-0-A switch	Order No. (MLFB)
24 V DC	12.5 mm	1.8 A	$48-264 \mathrm{~V} \mathrm{AC}$	0.06 A	$20 \mathrm{~A} / 20 \mathrm{~ms}$		3TX7002-3AB00
24 V DC	11.5 mm	1.5 A	$\leq 60 \mathrm{~V}$ DC	-	$4 \mathrm{~A} / 0.2 \mathrm{~ms}$		3TX7002-3AB01

Input interface with semiconductor output, 1 NO contact

110-230 V AC	12.5 mm	0.1 A	$\leq 60 \mathrm{VDC}$	-	$1 \mathrm{~A} / 20 \mathrm{~ms}$	3TX7002-4AG00
24 V UC	12.5 mm	0.1 A	$\leq 30 \mathrm{~V}$ DC	-	$1 \mathrm{~A} / 20 \mathrm{~ms}$	3TX7002-4AB00

Accessories

Cable with 24 terminals for 3TX70*
3TX7004-8BA00
Connection comb with 24 terminals for 6.2-mm width 3TX7004-8AA00
End plate for 3TX7004/5-...AB04
3TX7004-8CE00

1. LZX Plug-In Relays

Applications:

- Interface relay for electronic controls to couple inputs and outputs together
- Multiplying contacts
- Switching small loads
- Measured-value changeover switch

Main advantages:

- Tested AC 15 and DC 13 making/breaking capacity
- LZX:RT/LZX:RY can also be supplied as a complete module
- Extensive range of accessories
- Coil voltages: 24 V DC, 24 V AC, 115 V AC, 230 V AC

The family is available in 4 versions:

LZX:RT

1 or 2 changeover contacts AC 1: 16/8 A
15.5 mm wide

LZX:RY

1 changeover contact
AC 1: 8 A
15.5 mm wide

LZX:PT

2, 3 or 4 changeover contacts
AC 1: 12/10/6 A
27 mm wide

Product overview
LZX:RY and LZX:RT - the narrow space-saver for high performance and low power consumption Complete modules (socket, relay, retaining/eject bar, LED module and label)

Control supply voltage	Contacts	LED	Free-wheeling diode	Logical isolation	Hard gold-plating	Order No. (MLFB)
$\begin{aligned} & 24 \mathrm{~V} D C \\ & 24 \mathrm{VDC} \\ & 24 \mathrm{VDC} \\ & 230 \mathrm{VAC} \\ & 230 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \text { (changeover contacts) } \\ & 1 \\ & 2 \mathrm{CO} \\ & 1 \\ & 1 \\ & 2 \mathrm{CO} \\ & \text { CO } \end{aligned}$	Yes Yes Yes Yes Yes	Yes Yes Yes No No	Yes No No No No	No No No No No	LZX:RY1A4L24 LZX:RT3A4L24 LZX:RT4A4L24 LZX:RT3A4T30 LZX:RT4A4T30
Individual modules for self-assembly: relays						
$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 24 \mathrm{VDC} \\ & 24 \mathrm{VAC} \\ & 24 \mathrm{VAC} \\ & 115 \mathrm{VAC} \\ & 115 \mathrm{~V} \mathrm{AC} \\ & 230 \mathrm{VAC} \\ & 230 \vee ~ A C \\ & 24 \mathrm{VDC} \\ & 24 \mathrm{VAC} \\ & 230 \mathrm{VAC} \end{aligned}$	1 CO 2 CO 1 CO 2 CO 1 2 CO 1 1 1 1 CO 1 CO 1 1 CO 1 CO	No No	No		No Yes Yes Yes	LZX:RT314024 LZX:RT424024 LZX:RT314524 LZX:RT424524 LZX:RT314615 LZX:RT424615 LZX:RT314730 LZX:RT424730 LZX:RT315024 LZX:RT315524 LZX:RT315730
Accessories for LZX:RT, designed for 1 or $\mathbf{2}$ changeover contacts						
Description				Logical isolation		Order No. (MLFB)
Socket for DIN rail mounting				$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$		LZX:RT78625 LZX:RT78626
Retaining/eject bar Label				-		$\begin{aligned} & \text { LZX:RT16016 } \\ & \text { LZX:RY16040 } \end{aligned}$

LZX:PT - small but powerful individual components for self-assembly: relays

Control supply voltage	Contacts	LED	Free-wheeling diode	Hard gold-plating	Test bar	Order No. (MLFB)
24 V DC	2 CO	No	No	No	Yes	LZX:PT270024
24 V DC	3 CO	No	No	No	Yes	LZX:PT370024
24 V DC	4 CO	No	No	No	Yes	LZX:PT570024
24 V DC	4 CO	No	No	Yes	Yes	LZX:PT580024
24 V DC	4 CO	No	No	No	No	LZX:PT520024
24 V AC	2 CO	No	No	No	Yes	LZX:PT270524
24 VAC	3 CO	No	No	No	Yes	LZX:PT370524
24 VAC	4 CO	No	No	No	Yes	LZX:PT570524
24 VAC	4 CO	No	No	No	No	LZX:PT520524
115 V AC	2 CO	No	No	No	Yes	LZX:PT270615
115 V AC	3 CO	No	No	No	Yes	LZX:PT370615
115 V AC	4 CO	No	No	No	Yes	LZX:PT570615
230 V AC	2 CO	No	No	No	Yes	LZX:PT270730
230 V AC	3 CO	No	No	No	Yes	LZX:PT370730
230 V AC	4 CO	No	No	No	Yes	LZX:PT570730
230 V AC	4 CO	No	No	Yes	Yes	LZX:PT580730
230 V AC	4 CO	No	No	No	No	LZX:PT520730

Accessories for LZX:PT

Description	Designed for	Order No. (MLFB)
Socket for DIN rail mounting	2 CO	LZX:PT7702
	3 CO	LZX:P78703
Retainingleject bar	4 CO	LZX:PT78704
Label	$2 / 3 / 4 \mathrm{CO}$	LZX:PT16016

Accessories for LZX:RT and LZX:PT

Description	Control supply voltage	Free-wheeling diode	Order No. (MLFB)
LED module, red	24 V DC	Yes	LZX:RPML0024
	24 V UC	No	LZX:RPML0524
	110-230 V AC	No	LZX:RPML0730
LED module, green	24 V DC	Yes	LZX:RPMG0024
	110-230 V AC	No	LZX:RPMG0730
Free-wheeling diode	24 V DC	Yes	LZX:RPMT00A0
RC element	$\begin{aligned} & 24-48 \mathrm{~V} \mathrm{AC} \\ & 110-230 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	LZX:RPMU0548 LZX:RPMU0730

LZX:MT - for high voltages and currents, individual components for self-assembly: relays

Control supply voltage	Contacts	LED	Free-wheeling diode	Order No. (MLFB)
24 V DC	3 CO	No	No	LZX:MT321024
24 V DC	3 CO	Yes	No	LZX:MT323024
24 V AC	3 CO	No	No	LZX:MT326024
24 VAC	3 CO	Yes	No	LZX:MT328024
115 V AC	3 CO	No	No	LZX:MT326115
115 V AC	3 CO	Yes	No	LZX:MT328115
230 V AC	3 CO	No	No	LZX:MT326230
230 V AC	3 CO	Yes	No	LZX:MT328230

Accessories for LZX:MT	Order No. (MLFB)
Description	LZX:MT78750
Socket for DIN rail mounting, 11-pole	LZX:MT28800

12 3TG10 Power Relays and SITOP Power

3TG10 power relays come through with flying colors wherever lownoise relays or contactors and a low price are required. The power relays are suitable for basic controls, and especially for use in largeseries equipment and control systems. They are ideal for applications which only need an auxiliary contact and not an overload relay - yet at the same time demand a higher making/breaking capacity, additional switching voltage and a longer lifetime.

Applications:

- Domestic appliances and installations
- Hoisting systems: small elevators, elevating platforms
- Building services: Hum-free INSTA systems

Main advantages:

- Can be mounted in any position, hum-free
- Safe isolation
- Can be screwed or inserted
- Integrated auxiliary contact
- AC-3 power: $4 \mathrm{~kW} / 400 \mathrm{~V}$
- Operating current le/AC-1: $20 \mathrm{~A} / 400 \mathrm{~V}$
- Inrush current per phase: 90 A
- Integrated overvoltage damping
- Slimline housing - just 36 mm
- Increased making/breaking capacity when switching contacts are connected in parallel

6EP1 wide-voltage range power supply units

The 6EP1 primary switched-mode, wide-voltage power supply units in a $22.5-\mathrm{mm}$ slimline housing have been specially developed as ballast for standard products in all applications where "unusual" supply voltages and/or wide operating ranges have to be catered for. These devices have wide input voltage ranges and a 24 V DC output. They are hence able to operate with practically any supply voltage that is used for standard products. This cuts out the costs for special designs and reduces the time necessary for engineering.

Applications:

- Voltage ballast for all voltage ranges
- Voltage ballast for wide operating ranges

Main advantages:

- Just 22.5 mm wide
- Wide input
voltage range
- Lightweight
- High efficiency

Prduct overview

AC-1 operating current Ie at 400 V (A)	AC-1 power of three-phase loads at 50 Hz 400 V (kW)	AC-2 and AC-3 operating current Ie at 400 V (A)	AC-2 and AC-3 three-phase loads at 50 Hz 400 V (kW)	Connection type	Contacts NO NC	Control supply voltage	Order No. (MLFB)
20	13	8.4	4	Screw connection	4	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	3TG1010-0AL2 3TG1010-0AG2 3TG1010-0AC2 3TG1010-0BB4
20	13	8.4	4	Screw connection	31	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	3TG1001-0AL2 3TG1001-0AG2 3TG1001-0AC2 3TG1001-0BB4
16	10	8.4	4	Flat connector	4	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	3TG1010-1AL2 3TG1010-1AG2 3TG1010-1AC2 3TG1010-1BB4
16	10	8.4	4	Flat connector	31	$\begin{aligned} & 230 \mathrm{~V} \mathrm{AC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{AC} \\ & 24 \mathrm{~V} \mathrm{DC} \end{aligned}$	3TG1001-1AL2 3TG1001-1AG2 3TG1001-1AC2 3TG1001-1BB4
Wide-voltage range power supply units							
Input voltage	Output voltage	Max. output current		short-circuit-proof and overload protected			Order No. (MLFB)
$93-264$ V AC	24 V DC	0.5 A		Yes			6EP1331-2BA10
$\begin{aligned} & 30-264 \mathrm{~V} \text { DC } \\ & 30-186 \mathrm{~V} \mathrm{AC} \end{aligned}$	24 V DC	0.375 A		Yes			6EP1731-2BA00

Engineering Information

Temperature monitoring relays 3RS10/11

- Three-wire connections are envisaged for resistance sensors (PT100 etc.). Two-wire connections can be achieved by inserting a jumper between T2 and T3.
- The connecting cables of thermocouples can only be extended using an equalizing conductor.
- Either an open-circuit principle or a closed-circuit principle can be selected.

3RN1 thermistor motor protection

Response of the tripping unit to a control voltage failure

		Protected against voltage failure	
Response to	Monostable	Monostable	Bistable
	3RN10 00 3RN10 10 3RN10 11	$\begin{aligned} & \text { 3RN10 } 12 \\ & \text { 3RN10 13-... } 0 \\ & \text { 3RN10 } 22 \\ & \text { 3RN10 } 62 \end{aligned}$	3RN10 13-... 01
Control voltage failure	Device trips	Device trips	No change in control state of auxiliary contacts
Control voltage restored without tripping	Device resets	Device resets	
Control voltage restored after tripping	Device remains tripped	Device remains tripped	

3RP1 time relays

- The pulse and the interval can be set separately for the "clock pulse" function, in contrast with the "blinking" function where the pulse/interval ratio is always 1:1.
- 3RP15 time relay: 15 selectable time ranges, so that the "infinite" time range is integrated for test functions.
- "Time addition" function for multi-function time relays: by activating the starting contact (not protected against voltage failure).

3UG3 monitoring relays

- Voltage recovered from motors:

If a phase fails while the motor is running, the open phase in the motor acts like a generator. If a voltage which the relay is unable to distinguish from the normal voltage is recovered from this phase, a phase open-circuit with the motor running may well remain undetected. This effect does not occur with motors that are just starting.
3UG3 monitoring relays detect recovered voltages as follows:
3UG3511 Not detected
3UG3013 Up to 70\% of recovered voltages detected
3UG3012 Up to 95\% of recovered voltages detected

Interface converters

- Passive converters obtain their required power from the analog signal and do not need a separate power supply.
- With 2-way isolation, the input is electrically isolated from the output and from the supply voltage, while the output and the supply have common potential. With 3-way isolation, all three circuits are isolated from one another (refer to the diagram below).

3TX70 interface relays / LZX plug-in relays

- When capacitances are switched, relay contacts can weld in the $\mu \mathrm{m}$ range - we recommend the use of semiconductors here.
- At rated control supply voltages of 110 V AC or 230 V AC , the maximum permissible cable length should be taken into account when selecting the interfaces. The special 3TX700-... 05 type can be used for longer cables.
- The test lever of $L Z X: P T$ relays does not latch. If the test lever is pressed further until a 90° movement occurs, two small lugs will break off and the lever can then be set so that it latches.
- LZX relays are designed for AC voltages of 50 Hz ; for $60-\mathrm{Hz}$ operation, the lower response value must be increased by 10% and the power loss is reduced slightly.

3TG10 power relays

- If the three main circuits have a 20-A load, the fourth circuit must have $\mathrm{I}>10 \mathrm{~A}$; the maximum permissible ambient temperature is $40^{\circ} \mathrm{C}$.

Siemens AG

Automation and Drives
Low Voltage Controls and Distribution Division P.O. Box 32 40, D-91050 Erlangen
www.siemens.com/simirel

[^0]: ${ }^{1)}$ Protective separation up to 300 V according to DINNDE 0106
 ${ }^{2)}$ Information regarding the fault memory, refer to Catalog NS K 10/2001 Page $7 / 11$
 ${ }^{3)}$ Reset using the RESET key or by interrupting the control supply voltage

