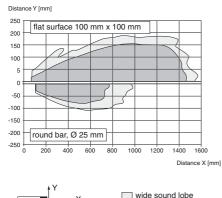


Model Number

UB1000-18GM75-E4-V15


Single head system

Features

- Switch output
- 5 different output functions can be
- Selectable sound lobe width
- **Program input**
- Synchronization options
- **Deactivation option**
- **Temperature compensation**
- Very small unusable area

Diagrams

Characteristic response curve

narrow sound lobe

Technical data

General specifications	
Sensing range	70 1000 mm
Adjustment range	90 1000 mm
Unusable area	0 70 mm
Standard target plate	100 mm x 100 mm
Transducer frequency	approx. 255 kHz
Response delay	approx. 125 ms
Indicators/operating means	

LED yellow indication of the switching state flashing: program function object detected

LED red solid red: Error red, flashing: program function, object not detected

Electrical specifications

Synchronization frequency

Operating voltage U_B 10 ... 30 V DC , ripple 10 $\%_{SS}$

No-load supply current I₀ ≤ 50 mA

Input/Output 1 synchronous connection, bi-directional Synchronization

0-lével: -U_B...+1 V 1-level: +4 V...+U_B

input impedance: > 12 k Ω synchronization pulse: \geq 100 μ s, synchronization interpulse

period: ≥ 2 ms

< 40 Hz Common mode operation

Multiplex operation ≤ 40 Hz /n, n = number of sensors

Input

Input type 1 program input. operating range 1: -U_B ... +1 V, operating range 2: +4 V ...

 $+U_B$

input impedance: > 4.7 k Ω ; program pulse: \geq 1 s

Output 1 switch output NPN Normally open/closed, programmable Output type

Rated operational current I_e 200 mA, short-circuit/overload protected \leq 3 V Voltage drop U_d Repeat accuracy ≤ 1 % Switching frequency f max. 3 Hz

Range hysteresis H 1 % of the set operating distance Temperature influence ± 1.5 % of full-scale value

Ambient conditions

Ambient temperature -25 ... 70 °C (-13 ... 158 °F) Storage temperature -40 ... 85 °C (-40 ... 185 °F)

Mechanical specifications

Connection type Device connector M12 x 1, 5-pin

Protection degree

Material

Housing brass, nickel-plated Transducer epoxy resin/hollow glass sphere mixture; foam

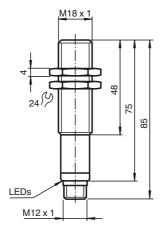
polyurethane, cover PBT

Mass 60 g

Compliance with standards and

directives

Standard conformity


EN 60947-5-2:2007 Standards

IEC 60947-5-2:2007

Approvals and certificates

UL approval cULus Listed, General Purpose CSA approval cCSAus Listed, General Purpose

Dimensions

Electrical Connection

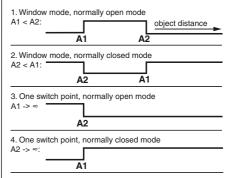
Standard symbol/Connections:

(version E4, npn)

Wire colors in accordance with EN 60947-5-2

Pinout

Wire colors in accordance with EN 60947-5-2


1	BN	(brown)
2	WH	(white)
3	BU	(blue)
4	BK	(black)
5	GY	(gray)

Synchronisation

The sensor features a synchronisation input for the suppression of mutual interference. If this input is not used, the sensor will operate using an internally generated clock rate. The synchronisation of multiple sensors can be realised as follows:

Additional Information

Programmable output modes

5. A1 -> ∞, A2 -> ∞: Object presence detection mode Object detected: Switch output closed No object detected: Switch output open

Accessories

UB-PROG2

Programming unit

OMH-04

Mounting aid for round steel \emptyset 12 mm or sheet 1.5 mm ... 3 mm

BF 18

Mounting flange, 18 mm

RF 18-F

Mounting flange with dead stop, 18 mm

BF 5-30

Universal mounting bracket for cylindrical sensors with a diameter of 5 ... 30 mm

UVW90-K18

Ultrasonic -deflector

V15-G-2M-PVC

Cable socket, M12, 5-pin, PVC cable

V15-W-2M-PUR

Cable socket, M12, 5-pin, PUR cable

External synchronisation

The sensor can be synchronised by the external application of a square wave voltage. A synchronisation pulse at the synchronisation input starts a measuring cycle. The pulse must have a duration greater than 100 μ s. The measuring cycle starts with the falling edge of a synchronisation pulse. A low level > 1 s or an open synchronisation input will result in the normal operation of the sensor. A high level at the synchronisation input disables the sensor.

Two operating modes are available

- 1. Multiple sensors can be controlled by the same synchronisation signal. The sensors are synchronised.
- 2. The synchronisation pulses are sent cyclically to individual sensors. The sensors operate in multiplex mode.

Internal synchronisation

The synchronisation connections of up to 5 sensors capable of internal synchronisation are connected to one another. When power is applied, these sensors will operate in multiplex mode. The response delay increases according to the number of sensors to be synchronised. Synchronisation cannot be performed during TEACH-IN and vice versa. The sensors must be operated in an unsynchronised manner to teach the switching point.

Note:

If the option for synchronisation is not used, the synchronisation input has to be connected to ground (0V) or the sensor has to be operated via a V1 cable connector (4-pin).

Adjusting the switching points

The ultrasonic sensor features a switch output with two teachable switching points. These are set by applying the supply voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s. LEDs indicate whether the sensor has recognised the target during the TEACH-IN procedure. Switching point A1 is taught with $-U_B$, A2 with $+U_B$.

Five different output functions can be set

- 1. Window mode, normally-open function
- 2. Window mode, normally-closed function
- 3. One switch point, normally-open function
- 4. One switch point, normally-closed function
- 5. Detection of object presence

Switching points may only be specified directly after Power on. A time lock secures the adjusted switching points against unintended modification 5 minutes after Power on. To modify the switching points later, the user may specify the desired values only after a new Power On.

TEACH-IN window mode, normally-open function

- Set target to near switching point
- TEACH-IN switching point A1 with -U_B
- Set target to far switching point
- TEACH-IN switching point A2 with +U_B

TEACH-IN window mode, normally-closed function

- Set target to near switching point
- TEACH-IN switching point A2 with +U_B
- Set target to far switching point
- TEACH-IN switching point A1 with -U_B

TEACH-IN switching point, normally-open function

- Set target to near switching point
- TEACH-IN switching point A2 with +U_B
- Cover sensor with hand or remove all objects from sensing range
- TEACH-IN switching point A1 with -U_B

TEACH-IN switching point, normally-closed function

- Set target to near switching point
- TEACH-IN switching point A1 with -U_B
- Cover sensor with hand or remove all objects from sensing range
- TEACH-IN switching point A2 with +U_B

TEACH-IN detection of object presence

- Cover sensor with hand or remove all objects from sensing range
- TEACH-IN switching point A1 with -U_B
- TEACH-IN switching point A2 with +U_B

Default setting of switching points

A1 = unusable area

A2 = nominal sensing range

LED Displays

204529_eng.xml

2011-08-

Date of issue:

Release date: 2011-08-12 13:07

Displays in dependence on operating mode	Red LED	Yellow LED
TEACH-IN switching point:		
Object detected	off	flashes
No object detected	flashes	off
Object uncertain (TEACH-IN invalid)	on	off
Normal operation	off	switching
		state
Fault	on	previous state

Adjusting the sound cone characteristics:

The ultrasonic sensor enables two different shapes of the sound cone, a wide angle sound cone and a small angle sound cone.

1. Small angle sound cone

- switch off the power supply
- connect the Teach-input wire to -U_B
- switch on the power supply
- the red LED flashes once with a pause before the next.
- · yellow LED: permanently on: indicates the presence of an object or disturbing object within the sensing range
- disconnect the Teach-input wire from -U_B and the changing is saved

2. Wide angle sound cone

- switch off the power supply
- connect the Teach-input wire with +U_R
- switch on the power supply
- the red LED double-flashes with a long pause before the next.
- yellow LED: permanently on: indicates an object or disturbing object within the sensing range
- disconnect the Teach-input wire from +U_B and the changing is saved

Installation conditions

If the sensor is installed at places, where the environment temperature can fall below 0 °C, for the sensors fixation, one of the mounting flanges BF18, BF18-F or BF 5-30 must be used.

In case of direct mounting of the sensor in a through hole using the steel nuts, it has to be fixed at the middle of the housing thread. If a fixation at the front end of the threaded housing is required, plastic nuts with centering ring (accessories) must be used.